PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 200 entries in the Bibliography.


Showing entries from 1 through 50


2021

Nonlinear Wave-Wave Coupling Related to Whistler-mode and Electron Bernstein Waves Observed by the Parker Solar Probe

We report nonlinear wave-wave coupling related to whistler-mode or electron Bernstein waves in the near-Sun slow solar wind with Parker Solar Probe (PSP) data. Prominent plasma wave power enhancements usually exist near the electron gyrofrequency (f$_ce$), identified as electrostatic whistler-mode and electron Bernstein waves (Malaspina et al. 2020). We find that these plasma waves near f$_ce$ typically have a harmonic spectral structure and further classify them into three types identified by the characteristics of wave fre ...

Ma, Jiuqi; Gao, Xinliang; Yang, Zhongwei; Tsurutani, Bruce; Liu, Mingzhe; Lu, Quanming; Wang, Shui;

Published by: \apj      Published on: sep

YEAR: 2021     DOI: 10.3847/1538-4357/ac0ef4

Solar wind; 1534

BepiColombo s cruise phase: unique opportunity for synergistic observations

The investigation of multi-spacecraft coordinated observations during the cruise phase of BepiColombo (ESA/JAXA) are reported, with a particular emphasis on the recently launched missions, Solar Orbiter (ESA/NASA) and Parker Solar Probe (NASA). Despite some payload constraints, many instruments onboard BepiColombo are operating during its cruise phase simultaneously covering a wide range of heliocentric distances [0.28 AU - 0.5 AU]. Hence, the various spacecraft configurations and the combined in-situ and remote sensing meas ...

Hadid, L.~Z.; enot, V.; Aizawa, S.; Milillo, A.; Zender, J.; Murakami, G.; Benkhoff, J.; Zouganelis, I.; Alberti, T.; e, Andr\; Bebesi, Z.; Califano, F.; Dimmock, A.~P.; Dosa, M.; Escoubet, C.~P.; Griton, L.; Ho, G.~C.; Horbury, T.~S.; Iwai, K.; Janvier, M.; Kilpua, E.; Lavraud, B.; Madar, A.; Miyoshi, Y.; Müller, D.; Pinto, R.~F.; Rouillard, A.~P.; Raines, J.~M.; Raouafi, N.; Sahraoui, F.; anchez-Cano, B.; Shiota, D.; Vainio, R.; Walsh, A.;

Published by: Frontiers in Astronomy and Space Sciences      Published on: sep

YEAR: 2021     DOI: 10.3389/fspas.2021.718024

Solar wind; multi-spacecraft measurements; Inner heliosphere; Spacecraft mission; Coordinated measurements

Triggered Ion-acoustic Waves in the Solar Wind

For more than 12 hr beginning on 2021 January 18, continuous narrowband electrostatic emissions were observed on the Parker Solar Probe near 20 solar radii. The observed <1000 Hz frequencies were well below the local ion-plasma frequency. Surprisingly, the emissions consisted of electrostatic wave packets with shock- like envelopes, appearing repetitively at a \raisebox-0.5ex\textasciitilde1.5 Hz rate. This repetitiveness correlated and was in phase with low-frequency electromagnetic fluctuations. The emissions were associat ...

Mozer, F.~S.; Vasko, I.~Y.; Verniero, J.~L.;

Published by: \apjl      Published on: sep

YEAR: 2021     DOI: 10.3847/2041-8213/ac2259

Solar Coronal Waves; Solar wind; 1995; 1534; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Parker Data Used

On the Origin of Switchbacks Observed in the Solar Wind

The origin of switchbacks in the solar wind is discussed in two classes of theory that differ in the location of the source being either near the transition region near the Sun or in the solar wind itself. The two classes of theory differ in their predictions of the switchback rate (the number of switchbacks observed per hour) as a function of distance from the Sun. To distinguish between these theories, one-hour averages of Parker Solar Probe data were averaged over five orbits to find the following: (1) The hourly averaged ...

Mozer, F.~S.; Bale, S.~D.; Bonnell, J.~W.; Drake, J.~F.; Hanson, E.~L.~M.; Mozer, M.~C.;

Published by: \apj      Published on: sep

YEAR: 2021     DOI: 10.3847/1538-4357/ac110d

Solar wind; Solar corona; Space plasmas; 1534; 1483; 1544; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

On the Role of Solar Wind Expansion as a Source of Whistler Waves: Scattering of Suprathermal Electrons and Heat Flux Regulation in the Inner Heliosphere

The role of solar wind expansion in generating whistler waves is investigated using the EB-iPic3D code, which models solar wind expansion self-consistently within a fully kinetic semi-implicit approach. The simulation is initialized with an electron velocity distribution function modeled after observations of the Parker Solar Probe during its first perihelion at 0.166 au, consisting of a dense core and an antisunward strahl. This distribution function is initially stable with respect to kinetic instabilities. Expansion drive ...

Micera, A.; Zhukov, A.~N.; opez, R.~A.; Boella, E.; Tenerani, A.; Velli, M.; Lapenta, G.; Innocenti, M.~E.;

Published by: \apj      Published on: sep

YEAR: 2021     DOI: 10.3847/1538-4357/ac1067

Solar wind; Plasma astrophysics; Space plasmas; 1534; 1261; 1544; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics; Parker Data Used

The Evolution of Compressible Solar Wind Turbulence in the Inner Heliosphere: PSP, THEMIS, and MAVEN Observations

The first computations of the compressible energy transfer rate from \raisebox-0.5ex\textasciitilde0.2 up to \raisebox-0.5ex\textasciitilde1.7 au is obtained using Parker Solar Probe (PSP), Time History of Events and Macroscale Interactions during Substorms (THEMIS), and Mars Atmosphere and Volatile EvolutioN (MAVEN) observations. Using a recently derived exact relation for isothermal magnetohydrodynamics turbulence, the compressible energy cascade rate, \ensuremath\varepsilon$_C$, is computed for hundred of events at differ ...

es, Andr\; Sahraoui, F.; Hadid, L.~Z.; Huang, S.~Y.; Romanelli, N.; Galtier, S.; DiBraccio, G.; Halekas, J.;

Published by: \apj      Published on: sep

YEAR: 2021     DOI: 10.3847/1538-4357/ac0af5

Solar wind; Fast solar wind; Slow solar wind; Interplanetary physics; 1534; 1872; 1873; 827; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Parker Data Used

Evolution of Large-amplitude Alfv\ en Waves and Generation of Switchbacks in the Expanding Solar Wind

Motivated by recent Parker Solar Probe (PSP) observations of switchbacks (abrupt, large-amplitude reversals in the radial magnetic field, which exhibit Alfv\ enic correlations), we examine the dynamics of large-amplitude Alfv\ en waves in the expanding solar wind. We develop an analytic model that makes several predictions: switchbacks should preferentially occur in regions where the solar wind plasma has undergone a greater expansion, the switchback fraction at radii comparable to PSP should be an increasing function of ...

Mallet, Alfred; Squire, Jonathan; Chandran, Benjamin; Bowen, Trevor; Bale, Stuart;

Published by: \apj      Published on: sep

YEAR: 2021     DOI: 10.3847/1538-4357/ac0c12

Alfven waves; Magnetohydrodynamics; Solar wind; Space plasmas; 23; 1964; 1534; 1544; Parker Data Used

Solar wind rotation rate and shear at coronal hole boundaries. Possible consequences for magnetic field inversions

Context. In situ measurements by several spacecraft have revealed that the solar wind is frequently perturbed by transient structures that have been interpreted as magnetic folds, jets, waves, and flux ropes that propagate rapidly away from the Sun over a large range of heliocentric distances. Parker Solar Probe (PSP), in particular, has detected very frequent rotations of the magnetic field vector at small heliocentric radial distances, accompanied by surprisingly large solar wind rotation rates. The physical origin of such ...

Pinto, R.~F.; Poirier, N.; Rouillard, A.~P.; Kouloumvakos, A.; Griton, L.; Fargette, N.; Kieokaew, R.; Lavraud, B.; Brun, A.~S.;

Published by: \aap      Published on: sep

YEAR: 2021     DOI: 10.1051/0004-6361/202040180

Sun: corona; Sun: rotation; Solar wind; Astrophysics - Solar and Stellar Astrophysics

Characteristic Scales of Magnetic Switchback Patches Near the Sun and Their Possible Association With Solar Supergranulation and Granulation

Parker Solar Probe (PSP) data recorded within a heliocentric radial distance of 0.3 au have revealed a magnetic field dominated by Alfv\ enic structures that undergo large local variations or even reversals of the radial magnetic field. They are called magnetic switchbacks, they are consistent with folds in magnetic field lines within a same magnetic sector and are associated with velocity spikes during an otherwise calmer background. They are thought to originate either in the low solar atmosphere through magnetic reconnect ...

Fargette, Na; Lavraud, Benoit; Rouillard, Alexis; eville, Victor; de Wit, Thierry; Froment, Clara; Halekas, Jasper; Phan, Tai; Malaspina, David; Bale, Stuart; Kasper, Justin; Louarn, Philippe; Case, Anthony; Korreck, Kelly; Larson, Davin; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis; Berthomier, Matthieu;

Published by: \apj      Published on: oct

YEAR: 2021     DOI: 10.3847/1538-4357/ac1112

Solar wind; Solar Physics; Wavelet analysis; Supergranulation; Solar granulation; Solar magnetic fields; 1534; 1476; 1918; 1662; 1498; 1503; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

Solar Origin of Compressive Alfv\ enic Spikes/Kinks as Observed by Parker Solar Probe

The solar wind is found by the Parker Solar Probe to be abundant with Alfv\ enic velocity spikes and magnetic field kinks. Temperature enhancement is another remarkable feature associated with the Alfv\ enic spikes. How the prototype of these coincident phenomena is generated intermittently in the source region is an important and wide-ranging subject. Here we propose a new model introducing guide-field discontinuity into the interchange magnetic reconnection between open funnels and closed loops with different magnetic heli ...

He, Jiansen; Zhu, Xingyu; Yang, Liping; Hou, Chuanpeng; Duan, Die; Zhang, Lei; Wang, Ying;

Published by: \apjl      Published on: may

YEAR: 2021     DOI: 10.3847/2041-8213/abf83d

Parker Data Used; Solar wind; Alfven waves; Solar atmosphere; Solar magnetic reconnection; 1534; 23; 1477; 1504

Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU

Context. Robustly interpreting sets of in situ spacecraft data of the heliospheric magnetic field (HMF) for the purpose of probing the total unsigned magnetic flux in the heliosphere is critical for constraining global coronal models as well as understanding the large scale structure of the heliosphere itself. The heliospheric flux (\ensuremath\Phi$_H$) is expected to be a spatially conserved quantity with a possible secular dependence on the solar cycle and equal to the measured radial component of the HMF weighted by the s ...

Badman, Samuel; Bale, Stuart; Rouillard, Alexis; Bowen, Trevor; Bonnell, John; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc;

Published by: \aap      Published on: jun

YEAR: 2021     DOI: 10.1051/0004-6361/202039407

Parker Data Used; Sun: corona; Sun: magnetic fields; Sun: heliosphere; Solar wind; methods: data analysis; methods: statistical; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

The Electron Structure of the Solar Wind

Time-series measurements of the number density ncore and temperature Tcore of the core-electron population of the solar wind are examined at 1 AU and at 0.13 AU using measurements from the WIND and Parker Solar Probe spacecraft, respectively. A statistical analysis of the ncore and Tcore measurements at 1 AU finds that the core-electron spatial structure of the solar wind is related to the magnetic-flux-tube structure of the solar wind; this electron structure is characterized by jumps in the values of ncore and Tcore when p ...

Borovsky, Joseph; Halekas, Jasper; Whittlesey, Phyllis;

Published by: Frontiers in Astronomy and Space Sciences      Published on: jun

YEAR: 2021     DOI: 10.3389/fspas.2021.690005

Parker Data Used; Solar wind; Heliosphere; interplanetary potential; Corona; Magnetic structure

Small-scale Magnetic Flux Ropes with Field-aligned Flows via the PSP In Situ Observations

Magnetic flux rope, formed by the helical magnetic field lines, can sometimes maintain its shape while carrying significant plasma flow that is aligned with the local magnetic field. We report the existence of such structures and static flux ropes by applying the Grad-Shafranov-based algorithm to the Parker Solar Probe in situ measurements in the first five encounters. These structures are detected at heliocentric distances, ranging from 0.13 to 0.66 au, in a 4-month time period. We find that flux ropes with field-aligned fl ...

Chen, Yu; Hu, Qiang; Zhao, Lingling; Kasper, Justin; Huang, Jia;

Published by: \apj      Published on: jun

YEAR: 2021     DOI: 10.3847/1538-4357/abfd30

Parker Data Used; Solar wind; Astronomy data analysis; interplanetary turbulence; Solar magnetic reconnection; Solar magnetic fields; 1534; 1858; 830; 1504; 1503; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Anisotropy of Solar Wind Turbulence in the Inner Heliosphere at Kinetic Scales: PSP Observations

The anisotropy of solar wind turbulence is a critical issue in understanding the physics of energy transfer between scales and energy conversion between fields and particles in the heliosphere. Using the measurement of Parker Solar Probe (PSP), we present an observation of the anisotropy at kinetic scales in the slow, Alfv\ enic, solar wind in the inner heliosphere. The magnetic compressibility behaves as expected for kinetic Alfv\ enic turbulence below the ion scale. A steepened transition range is found between the inertia ...

Duan, Die; He, Jiansen; Bowen, Trevor; Woodham, Lloyd; Wang, Tieyan; Chen, Christopher; Mallet, Alfred; Bale, Stuart;

Published by: \apjl      Published on: jul

YEAR: 2021     DOI: 10.3847/2041-8213/ac07ac

Parker Data Used; Solar wind; interplanetary turbulence; Alfven waves; 1534; 830; 23; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Switchback Boundary Dissipation and Relative Age

We examine Parker Solar Probe (PSP) magnetic field and plasma observations during its first encounter with the Sun in early 2018 November. During this perihelion time, impulsive reversals in the magnetic field, called switchbacks, were found in the data set characterized by a quick rotation in B along with a simultaneous increase in solar wind flow. In this work, we examine the structure and morphology of 920 switchback boundaries as PSP enters and exits the structures, specifically looking for evidence of boundary degra ...

Farrell, W.~M.; Rasca, A.~P.; MacDowall, R.~J.; Gruesbeck, J.~R.; Bale, S.~D.; Kasper, J.~C.;

Published by: \apj      Published on: jul

YEAR: 2021     DOI: 10.3847/1538-4357/ac005b

Parker Data Used; Solar wind; Solar Physics; Solar magnetic flux emergence; Solar magnetic fields; 1534; 1476; 2000; 1503

Energetic particle evolution during coronal mass ejection passage from 0.3 to 1 AU

We provide analysis of a coronal mass ejection (CME) that passed over Parker Solar Probe (PSP) on January 20, 2020 when the spacecraft was at just 0.32 AU. The Integrated Science Investigation of the Sun instrument suite measures energetic particle populations associated with the CME before, during, and after its passage over the spacecraft. We observe a complex evolution of energetic particles, including a brief \raisebox-0.5ex\textasciitilde2 h period where the energetic particle fluxes are enhanced and the nominal orienta ...

Joyce, C.~J.; McComas, D.~J.; Schwadron, N.~A.; Vourlidas, A.; Christian, E.~R.; McNutt, R.~L.; Cohen, C.~M.~S.; Leske, R.~A.; Mewaldt, R.~A.; Stone, E.~C.; Mitchell, D.~G.; Hill, M.~E.; Roelof, E.~C.; Allen, R.~C.; Szalay, J.~R.; Rankin, J.~S.; Desai, M.~I.; Giacalone, J.; Matthaeus, W.~H.; Niehof, J.~T.; de Wet, W.; Winslow, R.~M.; Bale, S.~D.; Kasper, J.~C.;

Published by: \aap      Published on: jul

YEAR: 2021     DOI: 10.1051/0004-6361/202039933

Parker Data Used; acceleration of particles; Solar wind; magnetic fields

Flux conservation, radial scalings, Mach numbers, and critical distances in the solar wind: magnetohydrodynamics and Ulysses observations

One of the key challenges in solar and heliospheric physics is to understand the acceleration of the solar wind. As a super-sonic, super-Alfv\ enic plasma flow, the solar wind carries mass, momentum, energy, and angular momentum from the Sun into interplanetary space. We present a framework based on two-fluid magnetohydrodynamics to estimate the flux of these quantities based on spacecraft data independent of the heliocentric distance of the location of measurement. Applying this method to the Ulysses dataset allows us to st ...

Verscharen, Daniel; Bale, Stuart; Velli, Marco;

Published by: \mnras      Published on: jul

YEAR: 2021     DOI: 10.1093/mnras/stab2051

Solar wind; Sun: heliosphere; Magnetohydrodynamics; plasmas; methods: data analysis

The Sunward Electron Deficit: A Telltale Sign of the Sun s Electric Potential

As the Parker Solar Probe explores new regions of the inner heliosphere, it travels ever deeper into the electric potential of the Sun. In the near-Sun environment, a new feature of the electron distribution emerges, in the form of a deficit in the sunward suprathermal population. The lower boundary of this deficit forms a cutoff in phase space, at an energy determined by the electric potential drop between the observation point and the outer heliosphere. We explore the characteristics of the sunward deficit and the associat ...

Halekas, J.~S.; Ber\vci\vc, L.; Whittlesey, P.; Larson, D.~E.; Livi, R.; Berthomier, M.; Kasper, J.~C.; Case, A.~W.; Stevens, M.~L.; Bale, S.~D.; MacDowall, R.~J.; Pulupa, M.~P.;

Published by: \apj      Published on: jul

YEAR: 2021     DOI: 10.3847/1538-4357/ac096e

Parker Data Used; Solar wind; The Sun; 1534; 1693

General Exact Law of Compressible Isentropic Magnetohydrodynamic Flows: Theory and Spacecraft Observations in the Solar Wind

Various forms of exact laws governing magnetohydrodynamic (MHD) turbulence have been derived either in the incompressibility limit, or for isothermal compressible flows. Here we propose a more general method that allows us to obtain such laws for any turbulent isentropic flow (i.e., constant entropy). We demonstrate that the known MHD exact laws (incompressible and isothermal) and the new (polytropic) one can be obtained as specific cases of the general law when the corresponding closure equation is stated. We also recover a ...

Simon, P.; Sahraoui, F.;

Published by: \apj      Published on: jul

YEAR: 2021     DOI: 10.3847/1538-4357/ac0337

Solar wind; Solar Physics; Parker Data Used; Magnetohydrodynamics; Plasma astrophysics; Plasma physics; interplanetary turbulence; 1534; 1476; 1964; 1261; 2089; 830; Physics - Plasma Physics; Physics - Fluid Dynamics

Turbulent Generation of Magnetic Switchbacks in the Alfv\ enic Solar Wind

One of the most important early results from the Parker Solar Probe (PSP) is the ubiquitous presence of magnetic switchbacks, whose origin is under debate. Using a three-dimensional direct numerical simulation of the equations of compressible magnetohydrodynamics from the corona to 40 solar radii, we investigate whether magnetic switchbacks emerge from granulation-driven Alfv\ en waves and turbulence in the solar wind. The simulated solar wind is an Alfv\ enic slow-solar- wind stream with a radial profile consistent with var ...

Shoda, Munehito; Chandran, Benjamin; Cranmer, Steven;

Published by: \apj      Published on: jul

YEAR: 2021     DOI: 10.3847/1538-4357/abfdbc

Space plasmas; Solar wind; interplanetary turbulence; Parker Data Used; Magnetohydrodynamical simulations; Alfven waves; 1544; 1534; 830; 1966; 23; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Near-Sun Switchback Boundaries: Dissipation with Solar Distance

The most surprising result from the first solar encounters by the Parker Solar Probe (PSP) is the large amount of brief magnetic field reversals often referred to as switchbacks. Switchbacks have previously been observed further downstream in the solar wind by spacecraft such as Helios 2 at 62 R$_s$ from the Sun. However, these observations lack a distinct proton temperature increase detected inside switchbacks by PSP, implying that they are evolving over time to eventually reach a pressure balance at the switchback boundari ...

Rasca, Anthony; Farrell, William; MacDowall, Robert; Bale, Stuart; Kasper, Justin;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac079f

The Sun; Solar wind; Solar Physics; 1693; 1534; 1476; Parker Data Used

Characteristics of Interplanetary Discontinuities in the Inner Heliosphere Revealed by Parker Solar Probe

We present a statistical analysis for the characteristics and spatial evolution of the interplanetary discontinuities (IDs) in the solar wind, from 0.13-0.9 au, by using the Parker Solar Probe measurements on Orbits 4 and 5. We collected 3948 IDs, including 2511 rotational discontinuities (RDs) and 557 tangential discontinuities (TDs), with the remnant unidentified. The statistical results show that (1) the ID occurrence rate decreases from 200 events per day at 0.13 au to 1 event per day at 0.9 au, following a spatial scali ...

Liu, Y.~Y.; Fu, H.~S.; Cao, J.~B.; Liu, C.~M.; Wang, Z.; Guo, Z.~Z.; Xu, Y.; Bale, S.~D.; Kasper, J.~C.;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac06a1

Interplanetary discontinuities; Solar wind; interplanetary magnetic fields; Magnetohydrodynamics; 820; 1534; 824; 1964; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Multi-spacecraft study of the solar wind at solar minimum: Dependence on latitude and transient outflows

Context. The recent launches of Parker Solar Probe, Solar Orbiter (SO), and BepiColombo, along with several older spacecraft, have provided the opportunity to study the solar wind at multiple latitudes and distances from the Sun simultaneously. \ Aims: We take advantage of this unique spacecraft constellation, along with low solar activity across two solar rotations between May and July 2020, to investigate how the solar wind structure, including the heliospheric current sheet (HCS), varies with latitude. \ Methods: We visua ...

Laker, R.; Horbury, T.~S.; Bale, S.~D.; Matteini, L.; Woolley, T.; Woodham, L.~D.; Stawarz, J.~E.; Davies, E.~E.; Eastwood, J.~P.; Owens, M.~J.; Brien, H.; Evans, V.; Angelini, V.; Richter, I.; Heyner, D.; Owen, C.~J.; Louarn, P.; Fedorov, A.;

Published by: \aap      Published on: aug

YEAR: 2021     DOI: 10.1051/0004-6361/202140679

Sun: coronal mass ejections (CMEs); Solar wind; Sun: heliosphere; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

Plasma Properties, Switchback Patches and Low \ensuremath\alpha-Particle Abundance in Slow Alfv\ enic Coronal Hole Wind at 0.13 au

The Parker Solar Probe (PSP) mission presents a unique opportunity to study the near-Sun solar wind closer than any previous spacecraft. During its fourth and fifth solar encounters, PSP had the same orbital trajectory, meaning that solar wind was measured at the same latitudes and radial distances. We identify two streams measured at the same heliocentric distance (\raisebox-0.5ex\textasciitilde0.13au) and latitude (\raisebox-0.5ex\textasciitilde-3.5$^○$) across these encounters to reduce spatial evolution effects. By com ...

Woolley, Thomas; Matteini, Lorenzo; McManus, Michael; Ber\vci\vc, Laura; Badman, Samuel; Woodham, Lloyd; Horbury, Timothy; Bale, Stuart; Laker, Ronan; Stawarz, Julia; Larson, Davin;

Published by: \mnras      Published on: aug

YEAR: 2021     DOI: 10.1093/mnras/stab2281

Sun: heliosphere; Solar wind; magnetic fields; Parker Data Used

Assessing the Role of Interchange Reconnection in Forming Switchbacks

Abrupt deflections of the magnetic field in the solar wind, so called switchbacks, are frequently observed by the Parker Solar Probe (PSP) during its first two orbits and are believed to play an important role in unveiling the nature of solar corona heating and solar wind acceleration in the inner heliosphere. Many attempts were made recently to understand the nature of switchbacks. However, the origin, propagation, and evolution of switchbacks are still under debate. In this study, we attempt to use the linear theory of ...

Liang, H.; Zank, G.~P.; Nakanotani, M.; Zhao, L.;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac0a73

Space plasmas; Solar wind; Solar magnetic fields; Parker Data Used; Solar magnetic reconnection; 1544; 1534; 1503; 1504

Evolution of Interplanetary Coronal Mass Ejection Complexity: A Numerical Study through a Swarm of Simulated Spacecraft

In-situ measurements carried out by spacecraft in radial alignment are critical to advance our knowledge on the evolutionary behavior of coronal mass ejections (CMEs) and their magnetic structures during propagation through interplanetary space. Yet, the scarcity of radially aligned CME crossings restricts investigations on the evolution of CME magnetic structures to a few case studies, preventing a comprehensive understanding of CME complexity changes during propagation. In this Letter, we perform numerical simulations of C ...

Scolini, Camilla; Winslow, Reka; Lugaz, No\; Poedts, Stefaan;

Published by: \apjl      Published on: aug

YEAR: 2021     DOI: 10.3847/2041-8213/ac0d58

Solar coronal mass ejections; Solar wind; Parker Data Used; interplanetary magnetic fields; Corotating streams; 310; 1534; 824; 314; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Dynamics of nanodust in the vicinity of a stellar corona: Effect of plasma corotation

Context. In the vicinity of the Sun or other stars, the motion of the coronal and stellar wind plasma must include some amount of corotation, which could affect the dynamics of charged dust particles. In the case of the Sun, this region is now investigated in situ by the Parker Solar Probe. Charged dust particles coming from the vicinity of the Sun can also reach, and possibly be detected by, the Solar Orbiter. \ Aims: We use numerical simulations and theoretical models to study the effect of plasma corotation on the motion ...

Czechowski, A.; Mann, I.;

Published by: \aap      Published on: aug

YEAR: 2021     DOI: 10.1051/0004-6361/202141048

Sun: heliosphere; Solar wind; acceleration of particles; Parker Data Used; Interplanetary medium; circumstellar matter

Large Amplitude Switchback Turbulence: Possible Magnetic Velocity Alignment Structures

Switchbacks are widely acknowledged phenomena observed by the Parker Solar Probe and appear to occur in patches. Previous studies focused on the fluctuations at the magnetic reversals. However, the nature of the fluctuations inside the switchbacks remains unknown. Here we utilize the magnetic field data and plasma data measured by the Parker Solar Probe in the first four encounters. We investigate the fluctuations in the switchback intervals of 100 s with $B_R 0$ at every instant and compare them to the fluctuations in the n ...

Wu, Honghong; Tu, Chuanyi; Wang, Xin; Yang, Liping;

Published by: The Astrophysical Journal      Published on: 06/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abec6c

Parker Data Used; Solar wind; interplanetary turbulence; 1534; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

A Focused Transport-based Kinetic Fractional Diffusion-advection Equation for Energetic Particle Trapping and Reconnection-related Acceleration by Small-scale Magnetic Flux Ropes in the Solar Wind

Analysis of energetic particle inner heliospheric spacecraft data increasingly suggests the existence of anomalous diffusion phenomena that should be addressed to achieve a better understanding of energetic particle transport and acceleration in the expanding solar wind medium. Related to this is fast-growing observational evidence supporting the long-standing prediction from magnetohydrodynamic (MHD) theory and simulations of the presence of an inner heliospheric, dominant quasi-two-dimensional MHD turbulence component that ...

le Roux, J.; Zank, G.;

Published by: The Astrophysical Journal      Published on: 06/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abf3c6

Interplanetary particle acceleration; Solar wind; Solar magnetic reconnection; 826; 1534; 1504; Parker Data Used

Time evolution of stream interaction region energetic particle spectra in the inner heliosphere

We analyze an energetic proton event associated with a stream interaction region (SIR) that was observed at Parker Solar Probe on day 320 of 2018 when the spacecraft was just 0.34 AU from the Sun. Using the Integrated Science Investigation of the Sun instrument suite, we perform a spectral analysis of the event and show how the observed spectra evolve over the course of the event. We find that the spectra from the first day of the event are much more consistent with local acceleration at a weak compression, while spectra fro ...

Joyce, C.; McComas, D.; Schwadron, N.; Christian, E.; Wiedenbeck, M.; McNutt, R.; Cohen, C.; Leske, R.; Mewaldt, R.; Stone, E.; Labrador, A.; Davis, A.; Cummings, A.; Mitchell, D.; Hill, M.; Roelof, E.; Allen, R.; Szalay, J.; Rankin, J.; Desai, M.; Giacalone, J.; Matthaeus, W.; Bale, S.; Kasper, J.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039330

acceleration of particles; Solar wind; magnetic fields; Parker Data Used

Energetic particle behavior in near-Sun magnetic field switchbacks from PSP

Context. The observation of numerous magnetic switchbacks and associated plasma jets in Parker Solar Probe (PSP) during its first five orbits, particularly near the Sun, has attracted considerable attention. Switchbacks have been found to be systematically associated with correlated reversals in the direction of the propagation of Alfvénic fluctuations, as well as similar reversals of the electron strahl.
Aims: Here we aim to see whether the energetic particles change direction at the magnetic field switchbacks.

Bandyopadhyay, R.; Matthaeus, W.; McComas, D.; Joyce, C.; Szalay, J.; Christian, E.; Giacalone, J.; Schwadron, N.; Mitchell, D.; Hill, M.; McNutt, R.; Desai, M.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Kasper, J.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039800

Solar wind; magnetic fields; plasmas; turbulence; instabilities; waves; Parker Data Used

Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind

Context. Recent studies of the solar wind sunward of 0.25 AU reveal that it contains quiescent regions, with low-amplitude plasma and magnetic field fluctuations, and a magnetic field direction similar to the Parker spiral. The quiescent regions are thought to have a more direct magnetic connection to the solar corona than other types of solar wind, suggesting that waves or instabilities in the quiescent regions are indicative of the early evolution of the solar wind as it escapes the corona. The quiescent solar wind regions ...

Malaspina, D.; Wilson, L.; Ergun, R.; Bale, S.; Bonnell, J.; Goodrich, K.; Goetz, K.; Harvey, P.; MacDowall, R.; Pulupa, M.; Halekas, J.; Case, A.; Kasper, J.; Larson, D.; Stevens, M.; Whittlesey, P.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202140449

Solar wind; plasmas; instabilities; waves; Parker Data Used

Applicability of Taylor s hypothesis during Parker Solar Probe perihelia

We investigate the validity of Taylor s hypothesis (TH) in the analysis of velocity and magnetic field fluctuations in Alfvénic solar wind streams measured by Parker Solar Probe (PSP) during the first four encounters. The analysis is based on a recent model of the spacetime correlation of magnetohydrodynamic (MHD) turbulence, which has been validated in high-resolution numerical simulations of strong reduced MHD turbulence. We use PSP velocity and magnetic field measurements from 24 h intervals selected from each of the fir ...

Perez, Jean; Bourouaine, Sofiane; Chen, Christopher; Raouafi, Nour;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039879

Solar wind; Sun: heliosphere; turbulence; magnetohydrodynamics (MHD); plasmas; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics; Parker Data Used

The contribution of alpha particles to the solar wind angular momentum flux in the inner heliosphere

Context. An accurate assessment of the Sun s angular momentum (AM) loss rate is an independent constraint for models that describe the rotation evolution of Sun-like stars.
Aims: In situ measurements of the solar wind taken by Parker Solar Probe (PSP), at radial distances of ~28−55 R, are used to constrain the solar wind AM-loss rate. For the first time with PSP, this includes a measurement of the alpha particle contribution.
Methods: The mechanical AM flux in the solar wind protons (core and be ...

Finley, A.; McManus, M.; Matt, S.; Kasper, J.; Korreck, K.; Case, A.; Stevens, M.; Whittlesey, P.; Larson, D.; Livi, R.; Bale, S.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039288

Solar wind; stars: evolution; stars: winds; outflows; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet

During three of its first five orbits around the Sun, Parker Solar Probe (PSP) crossed the large-scale heliospheric current sheet (HCS) multiple times and provided unprecedented detailed plasma and field observations of the near-Sun HCS. We report the common detections by PSP of reconnection exhaust signatures in the HCS at heliocentric distances of 29.5-107 solar radii during encounters 1, 4, and 5. Both sunward and antisunward-directed reconnection exhausts were observed. In the sunward reconnection exhausts, PSP detected ...

Phan, T.; Lavraud, B.; Halekas, J.; Øieroset, M.; Drake, J.; Eastwood, J.; Shay, M.; Pyakurel, P.; Bale, S.; Larson, D.; Livi, R.; Whittlesey, P.; Rahmati, A.; Pulupa, M.; McManus, M.; Verniero, J.; Bonnell, J.; Schwadron, N.; Stevens, M.; Case, A.; Kasper, J.; MacDowall, R.; Szabo, P.; Koval, A.; Korreck, K.; de Wit, Dudok; Malaspina, D.; Goetz, K.; Harvey, P.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039863

Sun: magnetic fields; Sun: heliosphere; Solar wind; Sun: flares; Parker Data Used

Detection of small magnetic flux ropes from the third and fourth Parker Solar Probe encounters

Context.
Aims: We systematically search for magnetic flux rope structures in the solar wind to within the closest distance to the Sun of ~0.13 AU, using data from the third and fourth orbits of the Parker Solar Probe.
Methods: We extended our previous magnetic helicity-based technique of identifying magnetic flux rope structures. The method was improved upon to incorporate the azimuthal flow, which becomes larger as the spacecraft approaches the Sun.
Results: A total of 21 and 34 magnetic flux ropes are ...

Zhao, L.; Zank, G.; Hu, Q.; Telloni, D.; Chen, Y.; Adhikari, L.; Nakanotani, M.; Kasper, J.; Huang, J.; Bale, S.; Korreck, K.; Case, A.; Stevens, M.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Larson, D.; Livi, R.; Whittlesey, P.; Klein, K.; Raouafi, N.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039298

Solar wind; Sun: magnetic fields; turbulence; methods: observational; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Wave-particle energy transfer directly observed in an ion cyclotron wave

Context. The first studies with Parker Solar Probe (PSP) data have made significant progress toward understanding of the fundamental properties of ion cyclotron waves in the inner heliosphere. The survey mode particle measurements of PSP, however, did not make it possible to measure the coupling between electromagnetic fields and particles on the time scale of the wave periods.
Aims: We present a novel approach to study wave-particle energy exchange with PSP.
Methods: We used the Flux Angle operation mode of th ...

Vech, D.; Martinovic, M.; Klein, K.; Malaspina, D.; Bowen, T.; Verniero, J.; Paulson, K.; de Wit, Dudok; Kasper, J.; Huang, J.; Stevens, M.; Case, A.; Korreck, K.; Mozer, F.; Goodrich, K.; Bale, S.; Whittlesey, P.; Livi, R.; Larson, D.; Pulupa, M.; Bonnell, J.; Harvey, P.; Goetz, K.; MacDowall, R.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039296

Solar wind; waves; turbulence; Physics - Space Physics; Physics - Plasma Physics; Parker Data Used

The active region source of a type III radio storm observed by Parker Solar Probe during encounter 2

Context. We investigated the source of a type III radio burst storm during encounter 2 of NASA s Parker Solar Probe (PSP) mission.
Aims: It was observed that in encounter 2 of NASA s PSP mission there was a large amount of radio activity and, in particular, a noise storm of frequent, small type III bursts from 31 March to 6 April 2019. Our aim is to investigate the source of these small and frequent bursts.
Methods: In order to do this, we analysed data from the Hinode EUV Imaging Spectrometer, PSP FIELDS, and ...

Harra, L.; Brooks, D.; Bale, S.; Mandrini, C.; Barczynski, K.; Sharma, R.; Badman, S.; Domínguez, Vargas; Pulupa, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039514

Sun: corona; Solar wind; Sun: radio radiation; Sun: abundances; Sun: atmosphere; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Direct evidence for magnetic reconnection at the boundaries of magnetic switchbacks with Parker Solar Probe

Context. The first encounters of Parker Solar Probe (PSP) with the Sun revealed the presence of ubiquitous localised magnetic deflections in the inner heliosphere; these structures, often called switchbacks, are particularly striking in solar wind streams originating from coronal holes.
Aims: We report the direct piece of evidence for magnetic reconnection occurring at the boundaries of three switchbacks crossed by PSP at a distance of 45 to 48 solar radii to the Sun during its first encounter.
Methods: We anal ...

Froment, C.; Krasnoselskikh, V.; de Wit, Dudok; Agapitov, O.; Fargette, N.; Lavraud, B.; Larosa, A.; Kretzschmar, M.; Jagarlamudi, V.; Velli, M.; Malaspina, D.; Whittlesey, P.; Bale, S.; Case, A.; Goetz, K.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Mozer, F.; Pulupa, M.; Revillet, C.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039806

Sun: heliosphere; Solar wind; magnetic fields; magnetic reconnection; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Switchbacks: statistical properties and deviations from Alfvénicity

Context. Parker Solar Probe s first solar encounter has revealed the presence of sudden magnetic field deflections in the slow Alfvénic solar wind. These structures, which are often called switchbacks, are associated with proton velocity enhancements.
Aims: We study their statistical properties with a special focus on their boundaries.
Methods: Using data from SWEAP and FIELDS, we investigate particle and wavefield properties. The magnetic boundaries are analyzed with the minimum variance technique.
Res ...

Larosa, A.; Krasnoselskikh, V.; de Wit, Dudok; Agapitov, O.; Froment, C.; Jagarlamudi, V.; Velli, M.; Bale, S.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Revillet, C.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039442

Solar wind; magnetic fields; waves; magnetohydrodynamics (MHD); Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Turbulent Proton Heating Rate in the Solar Wind from 545 R

Various remote sensing observations have been used so far to probe the turbulent properties of the solar wind. Using the recently reported density modulation indices that are derived using angular broadening observations of Crab Nebula during 19522013, we measured the solar wind proton heating using the kinetic Alfvn wave dispersion equation. The estimated heating rates vary from 1.58 1014 to 1.01 108 erg cm3 s1 in the heliocentric distance range of 545 R. Further, we found that he ...

Raja, Sasikumar; Subramanian, Prasad; Ingale, Madhusudan; Ramesh, R.; Maksimovic, Milan;

Published by: The Astrophysical Journal      Published on: 06/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abfcd1

Solar wind; Radio occultation; 1534; 1351; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Could Switchbacks Originate in the Lower Solar Atmosphere? II. Propagation of Switchbacks in the Solar Corona

The magnetic switchbacks observed recently by the Parker Solar Probe have raised the question about their nature and origin. One of the competing theories of their origin is the interchange reconnection in the solar corona. In this scenario, switchbacks are generated at the reconnection site between open and closed magnetic fields, and are either advected by an upflow or propagate as waves into the solar wind. In this paper we test the wave hypothesis, numerically modeling the propagation of a switchback, modeled as an embed ...

Magyar, Norbert; Utz, Dominik; Erdélyi, Robertus; Nakariakov, Valery;

Published by: The Astrophysical Journal      Published on: 06/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abfa98

Solar wind; Magnetohydrodynamics; Alfven waves; Solar Coronal Waves; Nonlinear regression; 1534; 1964; 23; 1995; 1948; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

Using Parker Solar Probe observations during the first four perihelia to constrain global magnetohydrodynamic models

Context. Parker Solar Probe (PSP) is providing an unprecedented view of the Sun s corona as it progressively dips closer into the solar atmosphere with each solar encounter. Each set of observations provides a unique opportunity to test and constrain global models of the solar corona and inner heliosphere and, in turn, use the model results to provide a global context for interpreting such observations.
Aims: In this study, we develop a set of global magnetohydrodynamic (MHD) model solutions of varying degrees of soph ...

Riley, Pete; Lionello, Roberto; Caplan, Ronald; Downs, Cooper; Linker, Jon; Badman, Samuel; Stevens, Michael;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039815

Sun: corona; Sun: heliosphere; Sun: magnetic fields; Solar wind; Sun: evolution; Interplanetary medium; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

Discontinuity analysis of the leading switchback transition regions

Context. Magnetic switchbacks are magnetic structures characterized as intervals of sudden reversal in the radial component of the pristine solar wind s magnetic field. Switchbacks comprise of magnetic spikes that are preceded and succeeded by switchback transition regions within which the radial magnetic field reverses. Determining switchback generation and evolution mechanisms will further our understanding of the global circulation and transportation of the Sun s open magnetic flux.
Aims: The present study juxtapos ...

Akhavan-Tafti, M.; Kasper, J.; Huang, J.; Bale, S.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039508

magnetic reconnection; magnetic fields; Solar wind; methods: data analysis; magnetohydrodynamics (MHD); instabilities; Parker Data Used

Evolution of Solar Wind Turbulence from 0.1 to 1 au during the First Parker Solar Probe-Solar Orbiter Radial Alignment

The first radial alignment between Parker Solar Probe and Solar Orbiter spacecraft is used to investigate the evolution of solar wind turbulence in the inner heliosphere. Assuming ballistic propagation, two 1.5 hr intervals are tentatively identified as providing measurements of the same plasma parcels traveling from 0.1 to 1 au. Using magnetic field measurements from both spacecraft, the properties of turbulence in the two intervals are assessed. Magnetic spectral density, flatness, and high-order moment scaling laws are ca ...

Telloni, Daniele; Sorriso-Valvo, Luca; Woodham, Lloyd; Panasenco, Olga; Velli, Marco; Carbone, Francesco; Zank, Gary; Bruno, Roberto; Perrone, Denise; Nakanotani, Masaru; Shi, Chen; Amicis, Raffaella; De Marco, Rossana; Jagarlamudi, Vamsee; Steinvall, Konrad; Marino, Raffaele; Adhikari, Laxman; Zhao, Lingling; Liang, Haoming; Tenerani, Anna; Laker, Ronan; Horbury, Timothy; Bale, Stuart; Pulupa, Marc; Malaspina, David; MacDowall, Robert; Goetz, Keith; de Wit, Thierry; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Larson, Davin; Case, Anthony; Stevens, Michael; Whittlesey, Phyllis; Livi, Roberto; Owen, Christopher; Livi, Stefano; Louarn, Philippe; Antonucci, Ester; Romoli, Marco; Brien, Helen; Evans, Vincent; Angelini, Virginia;

Published by: The Astrophysical Journal      Published on: 05/2021

YEAR: 2021     DOI: 10.3847/2041-8213/abf7d1

Parker Data Used; Magnetohydrodynamics; Alfven waves; Space plasmas; interplanetary turbulence; Solar wind; 1964; 23; 1544; 830; 1534

Plasma dynamics in low-electron-beta environments

Recent in situ measurements by the MMS and Parker Solar Probe missions bring interest to small-scale plasma dynamics (waves, turbulence, magnetic reconnection) in regions where the electron thermal energy is smaller than the magnetic one. Examples of such regions are the Earth s mangetosheath and the vicinity of the solar corona, and they are also encountered in other astrophysical systems. In this brief review, we consider simple physical models describing plasma dynamics in such low-electron-beta regimes, discuss their con ...

Boldyrev, Stanislav; Loureiro, Nuno; Roytershteyn, Vadim;

Published by: Frontiers in Astronomy and Space Sciences      Published on: 05/2021

YEAR: 2021     DOI: 10.3389/fspas.2021.621040

magnetic fields; Heliosphere; Solar wind; Solar corona; Earth magnetosheath; plasma turbulence; Earth magnetosphere; Collisionless plasma

Correlation of the Sunspot Number and the Waiting-time Distribution of Solar Flares, Coronal Mass Ejections, and Solar Wind Switchback Events Observed with the Parker Solar Probe

Waiting-time distributions of solar flares and coronal mass ejections (CMEs) exhibit power-law-like distribution functions with slopes in the range of ατ ≍ 1.4-3.2, as observed in annual data sets during four solar cycles (1974-2012). We find a close correlation between the waiting-time power-law slope ατ and the sunspot number (SN), i.e., ατ = 1.38 + 0.01 × SN. The waiting-time distribution can be fitted with a Pareto-type function of the form N(τ) = N0 $(\tau _0+\tau )^ ...

Aschwanden, Markus; de Wit, Thierry;

Published by: The Astrophysical Journal      Published on: 05/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abef69

Parker Data Used; Solar wind; solar flares; 1534; 1496; Astrophysics - Solar and Stellar Astrophysics

Multiscale Solar Wind Turbulence Properties inside and near Switchbacks Measured by the Parker Solar Probe

The Parker Solar Probe (PSP) routinely observes magnetic field deflections in the solar wind at distances less than 0.3 au from the Sun. These deflections are related to structures commonly called "switchbacks" (SBs), whose origins and characteristic properties are currently debated. Here, we use a database of visually selected SB intervals—and regions of solar wind plasma measured just before and after each SB—to examine plasma parameters, turbulent spectra from inertial to dissipation scales, and intermittency ...

Martinovic, Mihailo; Klein, Kristopher; Huang, Jia; Chandran, Benjamin; Kasper, Justin; Lichko, Emily; Bowen, Trevor; Chen, Christopher; Matteini, Lorenzo; Stevens, Michael; Case, Anthony; Bale, Stuart;

Published by: The Astrophysical Journal      Published on: 05/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abebe5

Parker Data Used; Space plasmas; interplanetary turbulence; Solar wind; 1544; 830; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

The Dynamic Formation of Pseudostreamers

Streamers and pseudostreamers structure the corona at the largest scales, as seen in both eclipse and coronagraph white-light images. Their inverted-goblet appearance encloses broad coronal loops at the Sun and tapers to a narrow radial stalk away from the star. The streamer associated with the global solar dipole magnetic field is long-lived, predominantly contains a single arcade of nested loops within it, and separates opposite-polarity interplanetary magnetic fields with the heliospheric current sheet (HCS) anchored at i ...

Scott, Roger; Pontin, David; Antiochos, Spiro; DeVore, Richard; Wyper, Peter;

Published by: The Astrophysical Journal      Published on: 05/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abec4f

Solar Physics; Solar magnetic reconnection; Solar wind; 1476; 1504; 1534; Parker Data Used

First Observations of Anomalous Cosmic Rays in to 36 Solar Radii

NASA s Parker Solar Probe mission continues to travel closer to the Sun than any prior human-made object, with an expected closest approach of <10 solar radii (<0.046 au) by 2024. On board, the Integrated Science Investigation of the Sun instrument suite makes unprecedented in situ measurements of energetic particles in the near-Sun environment. The current low level of solar activity offers a prime opportunity to measure cosmic rays closer to the Sun than ever before. We present the first observations of anomalous cosmic ra ...

Rankin, J.; McComas, D.; Leske, R.; Christian, E.; Cohen, C.; Cummings, A.; Joyce, C.; Labrador, A.; Mewaldt, R.; Posner, A.; Schwadron, N.; Strauss, R.; Stone, E.; Wiedenbeck, M.;

Published by: The Astrophysical Journal      Published on: 05/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abec7e

cosmic rays; Solar wind; Heliosphere; Solar energetic particles; Solar Physics; solar cycle; Quiet Sun; Particle astrophysics; interplanetary magnetic fields; Plasma astrophysics; Interplanetary particle acceleration; Pickup ions; 329; 1534; 711; 1491; 1476; 1487; 1322; 96; 824; 1261; 826; 1239; Parker Data Used



  1      2      3      4