PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 7 entries in the Bibliography.


Showing entries from 1 through 7


2022

Validation of a Wave Heated 3D MHD Coronal-wind Model using Polarized Brightness and EUV Observations

The physical properties responsible for the formation and evolution of the corona and heliosphere are still not completely understood. 3D MHD global modeling is a powerful tool to investigate all the possible candidate processes. To fully understand the role of each of them, we need a validation process where the output from the simulations is quantitatively compared to the observational data. In this work, we present the results from our validation process applied to the wave turbulence driven 3D MHD corona-wind model WindP ...

Parenti, Susanna; eville, Victor; Brun, Allan; Pinto, Rui; Auchère, Fr\; Buchlin, Eric; Perri, Barbara; Strugarek, Antoine;

Published by: \apj      Published on: apr

YEAR: 2022     DOI: 10.3847/1538-4357/ac56da

Parker Data Used; Magnetohydrodynamical simulations; Solar Physics; Solar coronal heating; Solar coronal streamers; Solar corona; Solar extreme ultraviolet emission; Solar radiation; Solar atmosphere; 1966; 1476; 1989; 1486; 1483; 1493; 1521; 1477; Astrophysics - Solar and Stellar Astrophysics

2019

Solar Radiation Disturbance Torque Reduction for the Parker Solar Probe Observatory

This paper examines the methodology used for reducing solar pressure disturbance torques for the Parker Solar Probe (PSP) Observatory by minimizing the offset between spacecraft s Center of Gravity (CG) and Center of Pressure (CP). The force due to solar radiation pressures encountered by the PSP spacecraft, particularly at the 9.86 solar-radii (Rs) closest approach point in the orbit, are of a sufficient magnitude to produce significant disturbance torques. Inside of 0.25 AU, the Observatory is required to keep its Thermal ...

Ruiz, Felipe; Kelly, Daniel; Napolillo, David;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2019     DOI:

Ballast (railroad track); Flight control systems; Observatories; Optical properties; Orbits; Probes; Propellants; Solar radiation; Spacecraft; Torque; Well testing; Parker Engineering

2018

The Use of the Expanded FMEA in Spacecraft Fault Management

The NASA/APL Parker Solar Probe (PSP) mission will revolutionize our understanding of the Sun by swooping to within 4 million miles of the Sun s surface. This mission targets the fundamental processes and dynamics that characterize the Sun s corona and outwardly expanding solar wind and will be the first mission to fly into the low solar corona (i.e., the Sun s atmosphere) revealing both how the corona is heated and how the solar wind is accelerated. PSP has many engineering challenges presented by the intense environment in ...

Jones, Melissa; Fretz, Kristin; Kubota, Sanae; Smith, Clayton;

Published by: Proceedings - Annual Reliability and Maintainability Symposium      Published on:

YEAR: 2018     DOI:

Failure modes; Fault detection; Human resource management; Maintainability; NASA; Risk analysis; Risk assessment; Safety factor; Solar radiation; Solar wind; Spacecraft; Parker Engineering

Stray light analysis and testing of the SoloHI (solar orbiter heliospheric imager) and WISPR (wide field imager for solar probe) heliospheric imagers

The techniques for stray light analysis, optimization and testing are described for two space telescopes that observe the solar corona: the Solar Orbiter Heliospheric Imager (SoloHI) that will fly on the ESA Solar Orbiter (SolO), and the Wide Field Imager for Solar Probe (WISPR) that will fly on the NASA Parker Solar Probe (PSP) mission. Imaging the solar corona is challenging, because the corona is six orders of magnitude dimmer than the Sun surface at the limb, and the coronal brightness continues to decrease to ten orders ...

Thernisien, Arnaud; Howard, Russell; Korendyke, Clarence; Carter, Tim; Chua, Damien; Plunkett, Simon;

Published by: Proceedings of SPIE - The International Society for Optical Engineering      Published on:

YEAR: 2018     DOI:

Diffraction; Heat shielding; Image analysis; Millimeter waves; NASA; Optical coatings; Orbits; Probes; Ray tracing; Solar cell arrays; Solar radiation; Space flight; Space telescopes; Spacecraft; Parker Engineering

2015

Propulsion technology assessment: Science and enabling technologies to explore the interstellar medium

As part of a larger effort led by the Keck Institute for Space Studies at the California Institute of Technology, the Advanced Concepts Office at NASA’s George C. Marshall Space Flight Center conducted a study to assess what low-thrust advanced propulsion system candidates, existing and near term, could deliver a small, Voyager-like satellite to our solar system’s heliopause, approximately 100 AU from the center of the sun, within 10 years and within a 2025 to 2035 launch window. The advanced propulsion system tr ...

Hopkins, Randall; Thomas, Herbert; Wiegmann, Bruce; Heaton, Andrew; Johnson, Les; Baysinger, Michael; Beers, Benjamin;

Published by: AIAA SPACE 2015 Conference and Exposition      Published on:

YEAR: 2015     DOI:

Antennas; Earth (planet); Hall effect devices; Hall thrusters; Heat shielding; Interplanetary flight; NASA; Small satellites; Solar equipment; Solar radiation; Sun; Tetherlines; Trajectories; Parker Engineering

2012

Solar probe plus mission definition

Solar Probe Plus will be the first mission to touch the Sun - To fly into the solar corona to study how the corona is heated and the solar wind is accelerated. Solving these two fundamental mysteries has been a top-priority science goal for over five decades. Thanks to an innovative design, emerging technology developments and completion of a successful Phase A, answers to these critical questions will soon be achieved. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building the ...

Lockwood, Mary; Kinnison, James; Fox, Nicola; Conde, Richard; Driesman, Andrew;

Published by: Proceedings of the International Astronautical Congress, IAC      Published on:

YEAR: 2012     DOI:

Carbon; Foams; Heating; Interplanetary flight; magnetic fields; Microwave antennas; NASA; Probes; Remote sensing; Research laboratories; Solar cell arrays; Solar radiation; Solar wind; Temperature; Parker Engineering

2011

Solar Probe Plus, mission update

Solar Probe Plus (SPP) will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top-priority science goals for over five decades. Thanks to an innovative design, emerging technology developments and a significant risk reducing engineering development program these critical goals will soon be achieved. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building th ...

Morse, Brian; Kinnison, James; Lockwood, Mary; Reynolds, Edward; Fox, Nicola;

Published by: 62nd International Astronautical Congress 2011, IAC 2011      Published on:

YEAR: 2011     DOI:

Carbon; Heating; Instrument testing; Interplanetary flight; magnetic fields; Microwave antennas; NASA; Probes; Solar cell arrays; Solar radiation; Solar wind; Temperature; Parker Engineering



  1