PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 225 entries in the Bibliography.


Showing entries from 1 through 50


2021

Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at <0.3 AU and STEREO at 1 AU

\ Aims: Large amplitude narrowband obliquely propagating whistler-mode waves at frequencies of \raisebox-0.5ex\textasciitilde0.2 f$_ce$ (electron cyclotron frequency) are commonly observed at 1 AU, and they are most consistent with the whistler heat flux fan instability. We want to determine whether similar whistler-mode waves occur inside 0.3 AU and how their properties compare to those at 1 AU. \ Methods: We utilized the waveform capture data from the Parker Solar Probe Fields instrument from Encounters 1 through 4 to deve ...

Cattell, C.; Short, B.; Breneman, A.; Halekas, J.; Whittesley, P.; Larson, D.; Kasper, J.; Stevens, M.; Case, T.; , al;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039550"

Parker Data Used; parker solar probe; Solar Probe Plus

Solar wind energy flux observations in the inner heliosphere: First results from Parker Solar Probe

\ Aims: We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii (R$_\ensuremath\odot$). \ Methods: Energy flux was calculated based on electron parameters (density n$_e$, core electron temperature T$_c$, and suprathermal electron temperature T$_h$) obtained from the simplified analysis of the plasma quasi-t ...

Liu, M.; Issautier, K.; Meyer-Vernet, N.; Moncuquet, M.; Maksimovic, M.; Halekas, J.; Huang, J.; Griton, L.; Bale, S.; Bonnell, J.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039615"

Parker Data Used; parker solar probe; Solar Probe Plus

The near-Sun streamer belt solar wind: turbulence and solar wind acceleration

The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R$_\ensuremath\odot$, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence ...

Chen, C.; Chandran, B.; Woodham, L.; Jones, S.; Perez, J.; Bourouaine, S.; Bowen, T.; Klein, K.; Moncuquet, M.; Kasper, J.; Bale, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039872"

Parker Data Used; parker solar probe; Solar Probe Plus

Magnetic field line random walk and solar energetic particle path lengths. Stochastic theory and PSP/ISoIS observations

Context. In 2020 May-June, six solar energetic ion events were observed by the Parker Solar Probe/IS⊙IS instrument suite at ≈0.35 AU from the Sun. From standard velocity-dispersion analysis, the apparent ion path length is ≈0.625 AU at the onset of each event.
Aims: We develop a formalism for estimating the path length of random-walking magnetic field lines to explain why the apparent ion path length at an event onset greatly exceeds the radial distance from the Sun for these events.
Methods: We developed ...

Chhiber, R.; Matthaeus, W.; Cohen, C.; Ruffolo, D.; Sonsrettee, W.; Tooprakai, P.; Seripienlert, A.; Chuychai, P.; Usmanov, A.; Goldstein, M.; McComas, D.; Leske, R.; Christian, E.; Mewaldt, R.; Labrador, A.; al., et;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: "10.1051/0004-6361/202039816"

Parker Data Used; parker solar probe; Solar Probe Plus

Alfvenic versus non-Alfvenic turbulence in the inner heliosphere as observed by Parker Solar Probe

Context. Parker Solar Probe (PSP) measures the magnetic field and plasma parameters of the solar wind at unprecedentedly close distances to the Sun. These data provide great opportunities to study the early-stage evolution of magnetohydrodynamic (MHD) turbulence in the solar wind.
Aims: In this study, we make use of the PSP data to explore the nature of solar wind turbulence focusing on the Alfvénic character and power spectra of the fluctuations and their dependence on the distance and context (i.e., large-scale sol ...

Shi, C.; Velli, M.; Panasenco, O.; Tenerani, A.; eville, V.; Bale, S.; Kasper, J.; Korreck, K.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Pulupa, M.; Case, A.; Larson, D.; Verniero, J.; Livi, R.; Stevens, M.; al., et;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: "10.1051/0004-6361/202039818"

Parker Data Used; parker solar probe; Solar Probe Plus

2020

Magnetic increases with central current sheets: Observations with Parker Solar Probe

\ Aims: We report the observation by Parker Solar Probe (PSP) of magnetic structures in the solar wind that present a strong peak in their magnetic field magnitude with an embedded central current sheet. Similar structures have been observed, either at the Earth s magnetopause and called interlinked flux tubes, or in the solar wind and called interplanetary field enhancements. \ Methods: In this work, we first investigate two striking events in detail; one occurred in the regular slow solar wind on November 2, 2018 and the o ...

Fargette, N.; Lavraud, B.; Rouillard, A.; Eastwood, J.; Bale, S.; Phan, T.; Oieroset, M.; Halekas, J.; Kasper, J.; Berthomier, M.; Case, A.; Korreck, K.; Larson, D.; Louarn, P.; Malaspina, D.; Pulupa, M.; Stevens, M.; Whittlesey, P.; al., et;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039191"

Parker Data Used; parker solar probe; Solar Probe Plus

Electron heat flux in the near-Sun environment

\ Aims: We survey the electron heat flux observed by the Parker Solar Probe (PSP) in the near-Sun environment at heliocentric distances of 0.125-0.25 AU. \ Methods: We utilized measurements from the Solar Wind Electrons Alphas and Protons and FIELDS experiments to compute the solar wind electron heat flux and its components and to place these in context. \ Results: The PSP observations reveal a number of trends in the electron heat flux signatures near the Sun. The magnitude of the heat flux is anticorrelated with solar wind ...

Halekas, J.; Whittlesey, P.; Larson, D.; McGinnis, D.; Bale, S.; Berthomier, M.; Case, A.; Chandran, B.; Kasper, J.; Klein, K.; Korreck, K.; Livi, R.; MacDowall, R.; Maksimovic, M.; al., et;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039256"

Parker Data Used; parker solar probe; Solar Probe Plus

PSP/WISPR observations of dust density depletion near the Sun I. Remote observations to 8 Rsol from an observer between 0.13-0.35 AU

Context. In 1929, Russell predicted that dust particles cannot survive in a region close to any star, hence giving justification for a dust free zone to exist inside a certain distance from the star. This theoretical prediction has not been confirmed, even with our Sun. \ Aims: We use the unique vantage points and new perspectives of the Parker Solar Probe (PSP) mission to study the dust environment close to the Sun with imaging observations from the Wide Field Imager for Solar Probe (WISPR) as PSP orbits, progressively clos ...

Stenborg, G.; Howard, R.; Hess, P.; Gallagher, B.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039284"

Parker Data Used; parker solar probe; Solar Probe Plus

Modeling proton and electron heating in the fast solar wind

Context. The Parker Solar Probe (PSP) measures solar wind protons and electrons near the Sun. To study the thermodynamic properties of electrons and protons, we include electron effects, such as distributed turbulent heating between protons and electrons, Coulomb collisions between protons and electrons, and heat conduction of electrons. \ Aims: We develop a general theoretical model of nearly incompressible magnetohydrodynamic (NI MHD) turbulence coupled with a solar wind model that includes electron pressure and heat flux. ...

Adhikari, L.; Zank, G.P.; Zhao, L.-L.; Nakanotani, M.; Tasnim, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039297"

Parker Data Used; parker solar probe; Solar Probe Plus

Statistical analysis of orientation, shape, and size of solar wind switchbacks

Context. One of the main discoveries from the first two orbits of Parker Solar Probe (PSP) was the presence of magnetic switchbacks, whose deflections dominated the magnetic field measurements. Determining their shape and size could provide evidence of their origin, which is still unclear. Previous work with a single solar wind stream has indicated that these are long, thin structures although the direction of their major axis could not be determined. \ Aims: We investigate if this long, thin nature extends to other solar wi ...

Laker, R.; Horbury, T.; Bale, S.; Matteini, L.; Woolley, T.; Woodham, L.; Badman, S.; Pulupa, M.; Kasper, J.; Stevens, M.; Case, A.; Korreck, K.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039354"

Parker Data Used; parker solar probe; Solar Probe Plus

Dust observations from Parker Solar Probe: Dust ejection from the inner Solar System

Context. The FIELDS instrument onboard Parker Solar Probe (PSP) observes dust impacts on the spacecraft. The derived dust flux rates suggest that the particles originate from the vicinities of the Sun and are ejected by radiation pressure. Radiation pressure typically ejects particles of several 100 nm and smaller, which are also affected by the electromagnetic force. \ Aims: We aim to understand the influence of the electromagnetic force on the dust trajectories and to predict the dust fluxes along the orbit of PSP, within ...

Mann, I.; Czechowski, A.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039362"

Parker Data Used; parker solar probe; Solar Probe Plus

Tracking solar wind flows from rapidly varying viewpoints by the Wide-field Imager for Parker Solar Probe

\ Aims: Our goal is to develop methodologies to seamlessly track transient solar wind flows viewed by coronagraphs or heliospheric imagers from rapidly varying viewpoints. \ Methods: We constructed maps of intensity versus time and elongation (J-maps) from Parker Solar Probe (PSP) Wide- field Imager (WISPR) observations during the fourth encounter of PSP. From the J-map, we built an intensity on impact-radius-on- Thomson-surface map (R-map). Finally, we constructed a latitudinal intensity versus time map (Lat-map). Our metho ...

Nindos, A.; Patsourakos, S.; Vourlidas, A.; Liewer, P.C.; Penteado, P.; Hall, J.R.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039414"

Parker Data Used; parker solar probe; Solar Probe Plus

Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere

Context. Switchbacks are discrete angular deflections in the solar wind magnetic field that have been observed throughout the heliosphere. Recent observations by Parker Solar Probe (PSP) have revealed the presence of patches of switchbacks on the scale of hours to days, separated by quieter radial fields. \ Aims: We aim to further diagnose the origin of these patches using measurements of proton temperature anisotropy that can illuminate possible links to formation processes in the solar corona. \ Methods: We fitted 3D bi- ...

Woodham, L.; Horbury, T.; Matteini, L.; Woolley, T.; Laker, R.; Bale, S.; Nicolaou, G.; Stawarz, J.; Stansby, D.; Hietala, H.; Larson, D.; Livi, R.; Verniero, J.; McManus, M.; Kasper, J.; Korreck, K.; Raouafi, N.; Moncuquet, M.; Pulupa, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039415"

Parker Data Used; parker solar probe; Solar Probe Plus

Switchbacks as signatures of magnetic flux ropes generated by interchange reconnection in the corona

The structure of magnetic flux ropes injected into the solar wind during reconnection in the coronal atmosphere is explored with particle-in-cell simulations and compared with in situ measurements of magnetic switchbacks from the Parker Solar Probe. We suggest that multi-x-line reconnection between open and closed flux in the corona injects flux ropes into the solar wind and that these flux ropes convect outward over long distances before eroding due to reconnection. Simulations that explore the magnetic structure of flu ...

Drake, J.; Agapitov, A.; Swisdak, M.; Badman, S.; Bale, S.; Horbury, T.; Kasper, Justin; MacDowall, R.; Mozer, F.; Phan, T.; Pulupa, M.; Szabo, A.; Velli, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039432"

Parker Data Used; parker solar probe; Solar Probe Plus

Coronal mass ejections observed by heliospheric imagers at 0.2 and 1 au. The events on April 1 and 2, 2019

Context. We study two coronal mass ejections (CMEs) observed between April 1 to 2, 2019 by both the inner Wide-Field Imager for Parker Solar Probe (WISPR-I) onboard the Parker Solar Probe (PSP) spacecraft (located between about 46 and 38 solar radii during this period) and the inner heliospheric imager (HI-1) onboard the Solar Terrestrial Relations Observatory Ahead (STEREO-A) spacecraft, orbiting the Sun at about 0.96 au. This is the first study of CME observations from two viewpoints in similar directions but at considerab ...

Braga, C.; Vourlidas, A.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039490"

Parker Data Used; parker solar probe; Solar Probe Plus

Identification of coherent structures in space plasmas: The magnetic helicity-PVI method

Context. Plasma turbulence can be viewed as a magnetic landscape populated by large- and small-scale coherent structures. In this complex network, large helical magnetic tubes might be separated by small-scale magnetic reconnection events (current sheets). However, the identification of these magnetic structures in a continuous stream of data has always been a challenging task. \ Aims: Here, we present a method that is able to characterize both the large- and small-scale structures of the turbulent solar wind, based on the c ...

Pecora, F.; Servidio, S.; Greco, A.; Matthaeus, W.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039639"

Parker Data Used; parker solar probe; Solar Probe Plus

Evolution of a steamer-blowout CME as observed by imagers on Parker Solar Probe and the Solar Terrestrial Relations Observatory

Context. On 26-27 January 2020, the Wide-field Imager for Solar Probe on Parker Solar Probe (PSP) observed a coronal mass ejection (CME) from a distance of approximately 30 R$_\ensuremath\odot$ as it passed through the instrument s 95\textdegree field-of- view, providing an unprecedented view of the flux rope morphology of the CME s internal structure. The same CME was seen by Solar Terrestrial Relations Observatory-Ahead (STEREO-A), beginning on 25 January. \ Aims: Our goal is to understand the origin and determine the traj ...

Liewer, P.; Qiu, J.; Vourlidas, A.; Hall, J.; Penteado, P.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039641"

Parker Data Used; parker solar probe; Solar Probe Plus

Sensitivity of solar wind mass flux to coronal temperature

Solar wind models predict that the mass flux carried away from the Sun in the solar wind should be extremely sensitive to the temperature in the corona, where the solar wind is accelerated. We perform a direct test of this prediction in coronal holes and active regions using a combination of in situ and remote sensing observations. For coronal holes, a 50\% increase in temperature from 0.8 to 1.2 MK is associated with a tripling of the coronal mass flux. This trend is maintained within active regions at temperatures over 2 M ...

Stansby, D.; Bercic, L.; Matteini, L.; Owen, C.; French, R.; Baker, D.; Badman, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039789"

Parker Data Used; parker solar probe; Solar Probe Plus

A living catalog of stream interaction regions in the Parker Solar Probe era

Stream interaction regions (SIRs) and corotating interaction regions (CIRs) are important phenomena in heliospheric physics. These large-scale structures vary temporally and spatially, both in latitude and with radial distance. The additions of Parker Solar Probe (PSP) and Solar Orbiter have allowed for investigations into the radial evolution of these structures over a wide range of heliocentric distances for the first time since the Helios era. To better enable investigations of SIRs and CIRs within the inner heliosphere, ...

Allen, R.; Ho, G.; Jian, L.; Vines, S.; Bale, S.; Case, A.; Hill, M.; Joyce, C.; Kasper, J.; Korreck, K.; Malaspina, D.; McComas, D.; McNutt, R.; Möstl, C.; Odstrcil, D.; Raouafi, N.; Schwadron, N.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039833"

Parker Data Used; parker solar probe; Solar Probe Plus

Large-amplitude, Wideband, Doppler-shifted, Ion Acoustic Waves Observed on the Parker Solar Probe

Electric field spectra measured on the\ Parker\ Solar\ Probe\ typically contain upwards of 1000 large-amplitude (similar to 15 mV m(-1)), wideband (similar to 100-15,000 Hz), few-second-duration, electric field waveforms per day. The satellite also collected about 85 three-second bursts of electric field waveforms per day at a data rate of similar to 150,000 samples per second. Eight such bursts caught these waves, all of which were located in switchbacks of the magnetic field. A wave burst on 2019 Sep ...

Mozer, F.; Bonnell, J.; Bowen, T.; Schumm, G.; Vasko, I;

Published by: The Astrophysical Journal      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abafb4

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind

On the Scaling Properties of Magnetic-field Fluctuations through the Inner Heliosphere

Although the interplanetary magnetic-field variability has been extensively investigated in situ using data from several space missions, newly launched missions providing high-resolution measures and approaching the Sun offer the possibility to study the multiscale variability in the innermost\ solar\ system. Here, using\ Parker\ Solar\ Probe\ measurements, we investigate the scaling properties of\ solar\ wind magnetic-field fluctuations at different heliocentric distances. The resu ...

Alberti, Tommaso; Laurenza, Monica; Consolini, Giuseppe; Milillo, Anna; Marcucci, Maria; Carbone, Vincenzo; Bale, Stuart;

Published by: The Astrophysical Journal      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb3d2

Chaos; interplanetary magnetic fields; interplanetary turbulence; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Time series analysis

Shear-driven Transition to Isotropically Turbulent Solar Wind Outside the Alfv\ en Critical Zone

Motivated by prior remote observations of a transition from striated\ solar\ coronal structures to more isotropic "flocculated" fluctuations, we propose that the dynamics of the inner\ solar\ wind just outside the Alfven critical zone, and in the vicinity of the first beta = 1 surface, is powered by the relative velocities of adjacent coronal magnetic flux tubes. We suggest that large-amplitude flow contrasts are magnetically constrained at lower altitude but shear-driven dynamics are triggered as such ...

Ruffolo, D.; Matthaeus, W.; Chhiber, R.; Usmanov, A.; Yang, Y.; Bandyopadhyay, R.; Parashar, T.; Goldstein, M.; Deforest, C.; Wan, M.; Chasapis, A.; Maruca, B.; Velli, M.; Kasper, J.;

Published by: The Astrophysical Journal      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb594

Parker Data Used; parker solar probe; Solar Probe Plus

Small Electron Events Observed by Parker Solar Probe/IS⊙IS during Encounter 2

The current understanding of the characteristics of\ solar\ and inner heliospheric electron events is inferred almost entirely from observations made by spacecraft located at 1 astronomical unit (au). Previous observations within 1 au of the Sun, by the Helios spacecraft at similar to 0.3-1 au, indicate the presence of electron events that are not detected at 1 au or may have merged during transport from the Sun.\ Parker\ Solar\ Probe\textquoterights close proximity to the Sun at perihelion provid ...

Mitchell, J.; de Nolfo, G.; Hill, M.; Christian, E.; McComas, D.; Schwadron, N.; Wiedenbeck, M.; Bale, S.; Case, A.; Cohen, C.; Joyce, C.; Kasper, J.; Labrador, A.; Leske, R.; MacDowall, R.; Mewaldt, R.; Mitchell, D.; Pulupa, M.; Richardson, I.; Stevens, M.; Szalay, J.;

Published by: The Astrophysical Journal      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb2a4

Parker Data Used; parker solar probe; Radio bursts; Solar energetic particles; solar flares; Solar particle emission; Solar Physics; Solar Probe Plus

A Solar Coronal Hole and Fast Solar Wind Turbulence Model and First-orbit Parker Solar Probe (PSP) Observations

We propose a turbulence-driven\ solar\ wind model for a fast\ solar\ wind flow in an open coronal hole where the\ solar\ wind flow and the magnetic field are highly aligned. We compare the numerical results of our model with\ Parker\ Solar\ Probe\ measurements of the fast\ solar\ wind flow and find good agreement between them. We find that (1) the majority quasi-2D turbulence is mainly responsible for coronal heating, raising the temperature to about similar to 1 ...

Adhikari, L.; Zank, G.; Zhao, L.-L.;

Published by: The Astrophysical Journal      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb132

Parker Data Used; parker solar probe; Solar Probe Plus

The Solar Wind Angular Momentum Flux as Observed by Parker Solar Probe

he long-term evolution of the Sun\textquoterights rotation period cannot be directly observed, and is instead inferred from trends in the measured rotation periods of other Sun-like stars. Assuming the Sun spins down as it ages, following rotation rate proportional to age(-1/2), requires the current\ solar\ angular momentum (AM) loss rate to be around 6 x 10(30)erg. Magnetohydrodynamic models, and previous observations of the\ solar\ wind (from the Helios and Wind spacecraft), generally predict a value ...

Finley, Adam; Matt, Sean; eville, Victor; Pinto, Rui; Owens, Mathew; Kasper, Justin; Korreck, Kelly; Case, A.; Stevens, Michael; Whittlesey, Phyllis; Larson, Davin; Livi, Roberto;

Published by: The Astrophysical Journal      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/2041-8213/abb9a5

Parker Data Used; parker solar probe; Solar evolution; Solar Physics; Solar Probe Plus; Solar rotation; Solar wind; Stellar evolution; Stellar physics; Stellar rotation

PIC Simulations of Microinstabilities and Waves at Near-Sun Solar Wind Perpendicular Shocks: Predictions for Parker Solar Probe and Solar Orbiter

Microinstabilities and waves excited at moderate-Mach-number perpendicular shocks in the near-Sun solar wind are investigated by full particle-in-cell simulations. By analyzing the dispersion relation of fluctuating field components directly issued from the shock simulation, we obtain key findings concerning wave excitations at the shock front: (1) at the leading edge of the foot, two types of electrostatic (ES) waves are observed. The relative drift of the reflected ions versus the electrons triggers an electron cyclotro ...

Yang, Zhongwei; Liu, Ying; Matsukiyo, Shuichi; Lu, Quanming; Guo, Fan; Liu, Mingzhe; Xie, Huasheng; Gao, Xinliang; Guo, Jun;

Published by: The Astrophysical Journal      Published on: 09/2020

YEAR: 2020     DOI: 10.3847/2041-8213/abaf59

Interplanetary shocks; parker solar probe; Plasma astrophysics; Plasma physics; Solar Probe Plus; Space plasmas

Polytropic Behavior of Solar Wind Protons Observed by Parker Solar Probe

A polytropic process describes the transition of a fluid from one state to another through a specific relationship between the fluid density and temperature. The value of the polytropic index that governs this relationship determines the heat transfer and the effective degrees of freedom during a specific process. In this study, we analyze\ solar\ wind proton plasma measurements, obtained by the Faraday cup instrument on board the\ Parker\ Solar\ Probe. We examine the large-scale variations of the ...

Nicolaou, Georgios; Livadiotis, George; Wicks, Robert; Verscharen, Daniel; Maruca, Bennett;

Published by: The Astrophysical Journal      Published on: 09/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abaaae

Parker Data Used; parker solar probe; Solar Physics; Solar Probe Plus; Solar wind; Space plasmas

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

Published by: Astronomy \& Astrophysics      Published on: 09/2020

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Wave Composition, Propagation, and Polarization of Magnetohydrodynamic Turbulence within 0.3 au as Observed by Parker Solar Probe

Turbulence, a ubiquitous phenomenon in interplanetary space, is crucial for the energy conversion of space plasma at multiple scales. This work focuses on the propagation, polarization, and wave composition properties of the\ solar\ wind turbulence within 0.3 au, and its variation with heliocentric distance at magnetohydrodynamic scales (from 10 s to 1000 s in the spacecraft frame). We present the probability density function of propagation wavevectors (PDF (k(parallel to),k)) for\ solar\ wind turbulen ...

Zhu, Xingyu; He, Jiansen; Verscharen, Daniel; Duan, Die; Bale, Stuart;

Published by: The Astrophysical Journal      Published on: 09/2020

YEAR: 2020     DOI: 10.3847/2041-8213/abb23e

Alfv\ en waves; Heliosphere; interplanetary turbulence; Parker Data Used; parker solar probe; Slow solar wind; Solar Probe Plus

Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes

Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretic ...

Florido-Llinas, M.; Nieves-Chinchilla, T.; Linton, M.;

Published by: Solar Physics      Published on: 09/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01687-z

coronal mass ejections; Flux ropes; Kink instability; magnetic fields; parker solar probe; Solar Probe Plus; Twist distribution

Cross Helicity of the 2018 November Magnetic Cloud Observed by the Parker Solar Probe

Magnetic clouds are large-scale transient structures in the solar wind with low plasma-beta, low-amplitude magnetic field fluctuations, and twisted field lines with both ends often connected to the Sun. Their inertial-range turbulent properties have not been examined in detail. In this Letter, we analyze the normalized cross helicity, sigma(c), and residual energy, sigma(r), of plasma fluctuations in the 2018 November magnetic cloud observed at 0.25.au by the Parker Solar Probe. A low value of |sigma(c)| was present in th ...

Good, S.; Kilpua, E.; Ala-Lahti, M.; Osmane, A.; Bale, S.; Zhao, L.-L.;

Published by: The Astrophysical Journal      Published on: 09/2020

YEAR: 2020     DOI: 10.3847/2041-8213/abb021

interplanetary magnetic fields; interplanetary turbulence; Parker Data Used; parker solar probe; Solar coronal mass ejections; Solar Probe Plus; Solar wind

The Electromagnetic Signature of Outward Propagating Ion-scale Waves

First results from the Parker Solar Probe (PSP) mission have revealed ubiquitous coherent ion-scale waves in the inner heliosphere, which are signatures of kinetic wave-particle interactions and fluid instabilities. However, initial studies of the circularly polarized ion-scale waves observed by PSP have only thoroughly analyzed magnetic field signatures, precluding a determination of solar wind frame propagation direction and intrinsic wave polarization. A comprehensive determination of wave properties requires measureme ...

Bowen, Trevor; Bale, Stuart; Bonnell, J.; Larson, Davin; Mallet, Alfred; McManus, Michael; Mozer, Forrest; Pulupa, Marc; Vasko, Ivan; Verniero, J.;

Published by: The Astrophysical Journal      Published on: 08/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab9f37

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Plasma astrophysics; Plasma physics; Solar Probe Plus; Solar wind; Space plasmas

Magnetic Field Dropouts at Near-Sun Switchback Boundaries: A Superposed Epoch Analysis

During Parker Solar Probe\textquoterights first close encounter with the Sun in early 2018 November, a large number of impulsive rotations in the magnetic field were detected within 50 Rs; these also occurred in association with short-lived impulsive solar wind bursts in speed. These impulsive features are now called "switchback" events. We examined a set of these switchbacks where the boundary transition into and out of the switchback was abrupt, with fast B rotations and simultaneous solar wind speed changes ...

Farrell, W.; MacDowall, R.; Gruesbeck, J.; Bale, S.; Kasper, J.;

Published by: The Astrophysical Journal Supplement Series      Published on: 08/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab9eba

Parker Data Used; parker solar probe; Solar Physics; Solar Probe Plus; Solar wind; The Sun

The Solar Origin of Particle Events Measured by Parker Solar Probe

During the second solar encounter phase of Parker Solar Probe (PSP), two small solar energetic particle (SEP) events were observed by the Integrated Science Investigation of the Sun, on 2019 April 2 and 4. At the time, PSP was approaching its second perihelion at a distance of \~24.8 million kilometers from the solar center, it was in near-radial alignment with STEREO-A and in quadrature with Earth. During the two SEP events multiple narrow ejections and a streamer-blowout coronal mass ejection (SBO-CME) originated from a ...

Kouloumvakos, Athanasios; Vourlidas, Angelos; Rouillard, Alexis; Roelof, Edmond; Leske, Rick; Pinto, Rui; Poirier, Nicolas;

Published by: The Astrophysical Journal      Published on: 08/2020

YEAR: 2020     DOI: 10.3847/1538-4357/aba5a1

Parker Data Used; parker solar probe; Solar coronal mass ejection shocks; Solar coronal mass ejections; Solar energetic particles; Solar particle emission; Solar Probe Plus

Spectral Features in Field-aligned Solar Wind Turbulence from Parker Solar Probe Observations

Parker Solar Probe (PSP) observed a large variety of Alfv\ enic fluctuations in the fast and slow solar wind flow during its two perihelia. The properties of Alfv\ enic solar wind turbulence have been studied for decades in the near-Earth environment. A spectral index of -5/3 or -2 for magnetic field fluctuations has been observed using spacecraft measurements, which can be explained by turbulence theories of nearly incompressible magnetohydrodynamics (NI MHD) or critical balance. In this study, a rigorous search of field ...

Zhao, L.-L.; Zank, G.; Adhikari, L.; Nakanotani, M.; Telloni, D.; Carbone, F.;

Published by: The Astrophysical Journal      Published on: 08/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab9b7e

interplanetary turbulence; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Spectral index

Editorial: Solar Wind at the Dawn of the Parker Solar Probe and Solar Orbiter Era

Solar Wind 15 brought together almost 250 experts from all continents of the world to discuss the current trends and future perspectives of the research on the Sun and its solar wind. The present article collection recaptures some of the highlights of their contributions.

Lapenta, Giovanni; Zhukov, Andrei; van Driel-Gesztelyi, Lidia;

Published by: Solar Physics      Published on: 07/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01670-8

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind

Kinetic Scale Slow Solar Wind Turbulence in the Inner Heliosphere: Coexistence of Kinetic Alfv\ en Waves and Alfv\ en Ion Cyclotron Waves

The nature of the plasma wave modes around the ion kinetic scales in highly Alfv\ enic slow solar wind turbulence is investigated using data from the NASA\textquoterights Parker Solar Probe taken in the inner heliosphere, at 0.18 au from the Sun. The joint distribution of the normalized reduced magnetic helicity σmRB, τ) is obtained, where θRB is the angle between the local mean magnetic field and the radial direction and τ is the temporal scale. Two populations around ion scales a ...

Huang, S; Zhang, J.; Sahraoui, F.; He, J.; Yuan, Z.; es, Andr\; Hadid, L.; Deng, X.; Jiang, K.; Yu, L.; Xiong, Q; Wei, Y; Xu, S.; Bale, S.; Kasper, J.;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab9abb

1261; 1534; 1544; 1693; 1873; 23; 711; 824; 830; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Modeling the Transport Processes of a Pair of Solar Energetic Particle Events Observed by Parker Solar Probe Near Perihelion

We present model calculations of the transport processes of solar energetic particles in the corona and interplanetary medium for two events detected by Parker Solar Probe near its second perihelion on 2019 April 2 and April 4. In the 2019 April 2 event, the \<100 keV proton differential intensity measured by the Integrated Science Investigation of the Sun Low-Energy Energetic Particle instrument increased by more than a factor of 10 above the pre-event intensity, whereas the \~1 MeV proton differential intensity detec ...

Zhao, Lulu; Zhang, Ming; Lario, David;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab97b3

Parker Data Used; parker solar probe; Solar energetic particles; Solar Probe Plus

(Non)radial Solar Wind Propagation through the Heliosphere

The solar wind nonradial velocity components observed beyond the Alfv\ en point are usually attributed to waves, the interaction of different streams, or other transient phenomena. However, Earth-orbiting spacecraft as well as monitors at L1 indicate systematic deviations of the wind velocity from the radial direction. Since these deviations are of the order of several degrees, the calibration of the instruments is often questioned. This paper investigates for the first time the evolution of nonradial components of the so ...

Němeček, Zdeněk; a, Tereza; a, Jana; Richardson, John; Simůnek, Jiř\; Stevens, Michael;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab9ff7

Parker Data Used; parker solar probe; Solar Probe Plus

On the Shape of SEP Electron Spectra: The Role of Interplanetary Transport

We address the effect of particle scattering on the energy spectra of solar energetic electron events using (I) an observational and (II) a modeling approach. (I) We statistically study observations of the STEREO spacecraft, using directional electron measurements made with the Solar Electron and Proton Telescope in the range of 45-425 keV. We compare the energy spectra of the anti-Sunward propagating beam with that of the backward-scattered population and find that, on average, the backward-scattered population shows a h ...

Strauss, R.; Dresing, N.; Kollhoff, A.; Brüdern, M.;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab91b0

1491; 1693; 830; parker solar probe; Solar Probe Plus

The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au

The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was ...

Lario, D.; Balmaceda, L.; Alzate, N.; Mays, M.; Richardson, I.; Allen, R.; Florido-Llinas, M.; Nieves-Chinchilla, T.; Koval, A.; Lugaz, N.; Jian, L.; Arge, C.; Macneice, P.; Odstrcil, D.; Morgan, H.; Szabo, A.; Desai, M.; Whittlesey, P.; Stevens, M.; Ho, G.; Luhmann, J.;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab9942

Parker Data Used; parker solar probe; Solar Probe Plus

Using Stereoscopic Observations of Cometary Plasma Tails to Infer Solar Wind Speed

Detection of the solar wind speed near the Sun is significant in understanding the heating and acceleration of the solar wind. Cometary plasma tails have long been used as natural probes for solar wind speed; previous solar wind speed estimates via plasma tails, however, were based on comet images from a single viewpoint, and the projection effect may influence the result. Using stereoscopic observations from the Solar Terrestrial Relations Observatory and the Solar and Heliospheric Observatory, we three-dimensionally rec ...

Cheng, Long; Zhang, Quanhao; Wang, Yuming; Li, Xiaolei; Liu, Rui;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab93b6

1534; parker solar probe; Solar Probe Plus

Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence

We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U., with a power-law index of around -4 . Based on our measurements, we demonstrate that either a significant (\>50 \%) fraction of the total turbulent energy flux is dissipated in this range of scales ...

Bowen, Trevor; Mallet, Alfred; Bale, Stuart; Bonnell, J.; Case, Anthony; Chandran, Benjamin; Chasapis, Alexandros; Chen, Christopher; Duan, Die; de Wit, Thierry; Goetz, Keith; Halekas, Jasper; Harvey, Peter; Kasper, J.; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; McManus, Michael; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis;

Published by: Physical Review Letters      Published on: 07/2020

YEAR: 2020     DOI: 10.1103/PhysRevLett.125.025102

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

A new view of energetic particles from stream interaction regions observed by Parker Solar Probe

Early observations from the first orbit of Parker Solar Probe (PSP) show recurrent stream interaction regions that form close to the Sun. Energetic particle enhancements were observed on the 320th-326th day of the year 2018, which corresponds to ~1-7 days after the passage of the stream interface between faster and slower solar wind. Energetic particles stream into the inner heliosphere to the PSP spacecraft near 0.33 au (71 solar radii) where they are measured by the Integrated Science Investigation of the Sun (IS⊙IS). Th ...

Schwadron, N.; Joyce, C.; Aly, A.; Cohen, C.; Desai, M.; McComas, D.; Niehof, J.; Möbius, E.; al., et;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2020     DOI: "10.1051/0004-6361/202039352"

Parker Data Used; parker solar probe; Solar Probe Plus

First Radio Evidence for Impulsive Heating Contribution to the Quiet Solar Corona

This Letter explores the relevance of nanoflare-based models for heating the quiet Sun corona. Using meterwave data from the Murchison Widefield Array, we present the first successful detection of impulsive emissions down to flux densities of \~mSFU, about two orders of magnitude weaker than earlier attempts. These impulsive emissions have durations ≲1 s and are present throughout the quiet solar corona. The fractional time occupancy of these impulsive emissions at a given region is ≲10\%. The histograms of these impu ...

Mondal, Surajit; Oberoi, Divya; Mohan, Atul;

Published by: The Astrophysical Journal      Published on: 06/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab8817

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Quiet solar corona; Solar corona; Solar coronal heating; Solar coronal radio emission; Solar Probe Plus

Coronal-jet-producing Minifilament Eruptions as a Possible Source of Parker Solar Probe Switchbacks

The Parker Solar Probe (PSP) has observed copious rapid magnetic field direction changes in the near-Sun solar wind. These features have been called "switchbacks," and their origin is a mystery. But their widespread nature suggests that they may be generated by a frequently occurring process in the Sun\textquoterights atmosphere. We examine the possibility that the switchbacks originate from coronal jets. Recent work suggests that many coronal jets result when photospheric magnetic flux cancels, and forms a small-scale "m ...

Sterling, Alphonse; Moore, Ronald;

Published by: The Astrophysical Journal      Published on: 06/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab96be

1503; 1504; 1534; 1981; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Effects of Radial Distances on Small-scale Magnetic Flux Ropes in the Solar Wind

Small-scale magnetic flux ropes (SFRs) in the solar wind have been studied for decades. Statistical analysis utilizing various in situ spacecraft measurements is the main observational approach to investigating the generation and evolution of these small-scale structures. Based on the Grad-Shafranov reconstruction technique, we use the automated detection algorithm to build the databases of these small-scale structures via various spacecraft measurements at different heliocentric distances. We present the SFR properties, ...

Chen, Yu; Hu, Qiang;

Published by: The Astrophysical Journal      Published on: 05/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab8294

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Space Physics; Solar Probe Plus

Global Circulation of the Open Magnetic Flux of the Sun

The global circulation of the open magnetic flux of the Sun, the component of the solar magnetic field that opens into the heliosphere, and the consequences of the global circulation were proposed by Fisk and coworkers in the early 2000s. The Parker Solar Probe, on its initial encounters with the Sun, has provided direct confirmation of both the global circulation and the physical mechanism by which the circulation occurs, transport by interchange reconnection between open magnetic flux and large coronal loops. The implic ...

Fisk, L.; Kasper, J.;

Published by: The Astrophysical Journal      Published on: 05/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab8acd

Parker Data Used; parker solar probe; Solar Probe Plus

The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe\textquoterights First Orbit

We present heliospheric current sheet (HCS) and plasma sheet (HPS) observations during Parker Solar Probe\textquoterights (PSP) first orbit around the Sun. We focus on the eight intervals that display a true sector boundary (TSB; based on suprathermal electron pitch angle distributions) with one or several associated current sheets. The analysis shows that (1) the main density enhancements in the vicinity of the TSB and HCS are typically associated with electron strahl dropouts, implying magnetic disconnection from the Su ...

Lavraud, B.; Fargette, N.; eville, V.; Szabo, A.; Huang, J.; Rouillard, A.; Viall, N.; Phan, T.; Kasper, J.; Bale, S.; Berthomier, M.; Bonnell, J.; Case, A.; de Wit, Dudok; Eastwood, J.; enot, V.; Goetz, K.; Griton, L.; Halekas, J.; Harvey, P.; Kieokaew, R.; Klein, K.; Korreck, K.; Kouloumvakos, A.; Larson, D.; Lavarra, M.; Livi, R.; Louarn, P.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Nieves-Chinchilla, T.; Pinto, R.; Poirier, N.; Pulupa, M.; Raouafi, N.; Stevens, M.; Toledo-Redondo, S.; Whittlesey, P.;

Published by: The Astrophysical Journal      Published on: 05/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab8d2d

Parker Data Used; parker solar probe; Solar Probe Plus

A Merged Search-Coil and Fluxgate Magnetometer Data Product for Parker Solar Probe FIELDS

NASA\textquoterights Parker Solar Probe (PSP) mission is currently investigating the local plasma environment of the inner heliosphere (\<0.25 R) using both in situ and remote sensing instrumentation. Connecting signatures of microphysical particle heating and acceleration processes to macroscale heliospheric structure requires sensitive measurements of electromagnetic fields over a large range of physical scales. The FIELDS instrument, which provides PSP with in situ measurements of electromagnetic field ...

Bowen, T.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Goodrich, K.; Gruesbeck, J.; Harvey, P.; Jannet, G.; Koval, A.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Revillet, C.; Sheppard, D.; Szabo, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2020

YEAR: 2020     DOI: 10.1029/2020JA027813

Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Instrumentation and Detectors; Physics - Space Physics; Solar Probe Plus



  1      2      3      4      5