PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 9 entries in the Bibliography.


Showing entries from 1 through 9


2021

Characteristics of Magnetic Holes in the Solar Wind Revealed by Parker Solar Probe

Yu, L.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Xiong, Q.~Y.; Xu, S.~B.; Wei, Y.~Y.; Zhang, J.; Zhang, Z.~H.;

Published by: \apj      Published on: 02/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abb9a8

Solar wind; Solar Physics; interplanetary magnetic fields; Solar magnetic fields; 1534; 1476; 824; 1503; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Whistlers in the Solar Vicinity That Are Spiky in Time and Frequency

Mozer, F.~S.; Bonnell, J.~W.; Halekas, J.~S.; Rahmati, A.; Schum, G.; Vasko, I.~V.;

Published by: \apj      Published on: 02/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abce59

Solar wind; Solar Physics; Solar electromagnetic emission; 1534; 1476; 1490

2020

Prediction of the In Situ Coronal Mass Ejection Rate for Solar Cycle 25: Implications for Parker Solar Probe In Situ Observations

The Parker Solar Probe (PSP) and Solar Orbiter missions are designed to make groundbreaking observations of the Sun and interplanetary space within this decade. We show that a particularly interesting in situ observation of an interplanetary coronal mass ejection (ICME) by PSP may arise during close solar flybys (<0.1 au). During these times, the same magnetic flux rope inside an ICME could be observed in situ by PSP twice, by impacting its frontal part as well as its leg. Investigating the odds of this situation, we forecas ...

Möstl, Christian; Weiss, Andreas; Bailey, Rachel; Reiss, Martin; Amerstorfer, Tanja; Hinterreiter, Jürgen; Bauer, Maike; McIntosh, Scott; Lugaz, No\; Stansby, David;

Published by: The Astrophysical Journal      Published on: 11/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb9a1

Solar coronal mass ejection; Solar storm; Ejecta; space weather; Solar system; Solar wind; Solar Physics; interplanetary magnetic fields; Solar magnetic fields

Small Electron Events Observed by Parker Solar Probe/IS⊙IS during Encounter 2

The current understanding of the characteristics of\ solar\ and inner heliospheric electron events is inferred almost entirely from observations made by spacecraft located at 1 astronomical unit (au). Previous observations within 1 au of the Sun, by the Helios spacecraft at similar to 0.3-1 au, indicate the presence of electron events that are not detected at 1 au or may have merged during transport from the Sun.\ Parker\ Solar\ Probe\textquoterights close proximity to the Sun at perihelion provid ...

Mitchell, J.; de Nolfo, G.; Hill, M.; Christian, E.; McComas, D.; Schwadron, N.; Wiedenbeck, M.; Bale, S.; Case, A.; Cohen, C.; Joyce, C.; Kasper, J.; Labrador, A.; Leske, R.; MacDowall, R.; Mewaldt, R.; Mitchell, D.; Pulupa, M.; Richardson, I.; Stevens, M.; Szalay, J.;

Published by: The Astrophysical Journal      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb2a4

Parker Data Used; parker solar probe; Radio bursts; Solar energetic particles; solar flares; Solar particle emission; Solar Physics; Solar Probe Plus

The Solar Wind Angular Momentum Flux as Observed by Parker Solar Probe

he long-term evolution of the Sun\textquoterights rotation period cannot be directly observed, and is instead inferred from trends in the measured rotation periods of other Sun-like stars. Assuming the Sun spins down as it ages, following rotation rate proportional to age(-1/2), requires the current\ solar\ angular momentum (AM) loss rate to be around 6 x 10(30)erg. Magnetohydrodynamic models, and previous observations of the\ solar\ wind (from the Helios and Wind spacecraft), generally predict a value ...

Finley, Adam; Matt, Sean; eville, Victor; Pinto, Rui; Owens, Mathew; Kasper, Justin; Korreck, Kelly; Case, A.; Stevens, Michael; Whittlesey, Phyllis; Larson, Davin; Livi, Roberto;

Published by: The Astrophysical Journal      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/2041-8213/abb9a5

Parker Data Used; parker solar probe; Solar evolution; Solar Physics; Solar Probe Plus; Solar rotation; Solar wind; Stellar evolution; Stellar physics; Stellar rotation

Polytropic Behavior of Solar Wind Protons Observed by Parker Solar Probe

A polytropic process describes the transition of a fluid from one state to another through a specific relationship between the fluid density and temperature. The value of the polytropic index that governs this relationship determines the heat transfer and the effective degrees of freedom during a specific process. In this study, we analyze\ solar\ wind proton plasma measurements, obtained by the Faraday cup instrument on board the\ Parker\ Solar\ Probe. We examine the large-scale variations of the ...

Nicolaou, Georgios; Livadiotis, George; Wicks, Robert; Verscharen, Daniel; Maruca, Bennett;

Published by: The Astrophysical Journal      Published on: 09/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abaaae

Parker Data Used; parker solar probe; Solar Physics; Solar Probe Plus; Solar wind; Space plasmas

Magnetic Field Dropouts at Near-Sun Switchback Boundaries: A Superposed Epoch Analysis

During Parker Solar Probe\textquoterights first close encounter with the Sun in early 2018 November, a large number of impulsive rotations in the magnetic field were detected within 50 Rs; these also occurred in association with short-lived impulsive solar wind bursts in speed. These impulsive features are now called "switchback" events. We examined a set of these switchbacks where the boundary transition into and out of the switchback was abrupt, with fast B rotations and simultaneous solar wind speed changes ...

Farrell, W.; MacDowall, R.; Gruesbeck, J.; Bale, S.; Kasper, J.;

Published by: The Astrophysical Journal Supplement Series      Published on: 08/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab9eba

Parker Data Used; parker solar probe; Solar Physics; Solar Probe Plus; Solar wind; The Sun

2012

Estimation of the solar flare neutron worst-case fluxes and fluences for missions traveling close to the Sun

A method to estimate the total fluence of solar flare neutrons at a spacecraft traveling in the innermost part of the heliosphere (at heliocentric radial distances of \<1 AU) is presented. The results of the neutron production and emissivity codes of Hua and Lingenfelter (1987a, 1987b) scaled to one of the largest solar neutron events ever observed at the Earth are used to derive a conservative estimate of the energy spectrum of neutrons emitted from the Sun after a large solar flare. By taking into account the surviva ...

Lario, D.;

Published by: Space Weather      Published on: 03/2012

YEAR: 2012     DOI: 10.1029/2011SW000732

and Astronomy: Flares; and Astronomy: General or miscellaneous; and Astronomy: X-rays; and neutrinos; Astrophysics; gamma rays; parker solar probe; Solar Physics; Solar Probe Plus

2011

Statistical association of discontinuities and reconnection in magnetohydrodynamic turbulence

Servidio, S.; Greco, A.; Matthaeus, W.~H.; Osman, K.~T.; Dmitruk, P.;

Published by: Journal of Geophysical Research (Space Physics)      Published on: 09/2011

YEAR: 2011     DOI: 10.1029/2011JA016569

Parker Data Used; Interplanetary Physics: Discontinuities (7811); Interplanetary Physics: Solar wind plasma; Nonlinear Geophysics: Turbulence (3379; 4568; 7863); Solar Physics; Astrophysics; and Astronomy: Magnetic reconnection (2723; 7835)



  1