Notice:
|
Found 7 entries in the Bibliography.
Showing entries from 1 through 7
2022 |
The Dynamic Coupling of Streamers and Pseudostreamers to the Heliosphere The slow solar wind is generally believed to result from the interaction of open and closed coronal magnetic flux at streamers and pseudostreamers. We use three-dimensional magnetohydrodynamic simulations to determine the detailed structure and dynamics of open-closed interactions that are driven by photospheric convective flows. The photospheric magnetic field model includes a global dipole giving rise to a streamer together with a large parasitic polarity region giving rise to a pseudostreamer that separates a satellite co ... Aslanyan, V.; Pontin, D.~I.; Higginson, A.~K.; Wyper, P.~F.; Scott, R.~B.; Antiochos, S.~K.; Published by: \apj Published on: apr YEAR: 2022   DOI: 10.3847/1538-4357/ac5d5b Parker Data Used; Solar Physics; Solar magnetic reconnection; Solar corona; Solar coronal holes; Magnetohydrodynamics; Slow solar wind; 1476; 1504; 1483; 1484; 1964; 1873; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
2021 |
The first computations of the compressible energy transfer rate from \raisebox-0.5ex\textasciitilde0.2 up to \raisebox-0.5ex\textasciitilde1.7 au is obtained using Parker Solar Probe (PSP), Time History of Events and Macroscale Interactions during Substorms (THEMIS), and Mars Atmosphere and Volatile EvolutioN (MAVEN) observations. Using a recently derived exact relation for isothermal magnetohydrodynamics turbulence, the compressible energy cascade rate, \ensuremath\varepsilon$_C$, is computed for hundred of events at differ ... es, Andr\; Sahraoui, F.; Hadid, L.~Z.; Huang, S.~Y.; Romanelli, N.; Galtier, S.; DiBraccio, G.; Halekas, J.; Published by: \apj Published on: sep YEAR: 2021   DOI: 10.3847/1538-4357/ac0af5 Solar wind; Fast solar wind; Slow solar wind; Interplanetary physics; 1534; 1872; 1873; 827; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Parker Data Used |
The Formation and Lifetime of Outflows in a Solar Active Region Active regions are thought to be one contributor to the slow solar wind. Upflows in EUV coronal spectral lines are routinely observed at their boundaries, and provide the most direct way for upflowing material to escape into the heliosphere. The mechanisms that form and drive these upflows, however, remain to be fully characterized. It is unclear how quickly they form, or how long they exist during their lifetimes. They could be initiated low in the atmosphere during magnetic flux emergence, or as a response to processes occ ... Brooks, David; Harra, Louise; Bale, Stuart; Barczynski, Krzysztof; Mandrini, Cristina; Polito, Vanessa; Warren, Harry; Published by: \apj Published on: aug YEAR: 2021   DOI: 10.3847/1538-4357/ac0917 Solar Physics; Slow solar wind; Solar active regions; Solar energetic particles; 1476; 1873; 1974; 1491; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used |
Source-dependent Properties of Two Slow Solar Wind States Two states of the slow solar wind are identified from in situ measurements by the Parker Solar Probe (PSP) inside 50 solar radii from the Sun. At such distances the wind measured by PSP has not yet undergone significant transformation related to the expansion and propagation of the wind. We focus in this study on the properties of the quiet solar wind with no magnetic switchbacks. The two states differ by their plasma beta, flux, and magnetic pressure. PSP s magnetic connectivity established with potential field source surfa ... Griton, Lea; Rouillard, Alexis; Poirier, Nicolas; Issautier, Karine; Moncuquet, Michel; Pinto, Rui; Published by: The Astrophysical Journal Published on: 03/2021 YEAR: 2021   DOI: 10.3847/1538-4357/abe309 Parker Data Used; Slow solar wind; Solar wind; Solar coronal holes; Solar coronal streamers; 1873; 1534; 1484; 1486; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
2020 |
Energy Supply for Heating the Slow Solar Wind Observed by Parker Solar Probe between 0.17 and 0.7 au Energy supply sources for the heating process in the slow solar wind remain unknown. The Parker Solar Probe (PSP) mission provides a good opportunity to study this issue. Recently, PSP observations have found that the slow solar wind experiences stronger heating inside 0.24 au. Here for the first time we measure in the slow solar wind the radial gradient of the low-frequency breaks on the magnetic trace power spectra and evaluate the associated energy supply rate. We find that the energy supply rate is consistent with the ob ... Wu, Honghong; Tu, Chuanyi; Wang, Xin; He, Jiansen; Yang, Liping; Published by: The Astrophysical Journal Published on: 11/2020 YEAR: 2020   DOI: 10.3847/2041-8213/abc5b6 Parker Data Used; Slow solar wind; interplanetary turbulence; Solar coronal heating |
Turbulence, a ubiquitous phenomenon in interplanetary space, is crucial for the energy conversion of space plasma at multiple scales. This work focuses on the propagation, polarization, and wave composition properties of the\ solar\ wind turbulence within 0.3 au, and its variation with heliocentric distance at magnetohydrodynamic scales (from 10 s to 1000 s in the spacecraft frame). We present the probability density function of propagation wavevectors (PDF (k(parallel to),k)) for\ solar\ wind turbulen ... Zhu, Xingyu; He, Jiansen; Verscharen, Daniel; Duan, Die; Bale, Stuart; Published by: The Astrophysical Journal Published on: 09/2020 YEAR: 2020   DOI: 10.3847/2041-8213/abb23e Alfv\ en waves; Heliosphere; interplanetary turbulence; Parker Data Used; parker solar probe; Slow solar wind; Solar Probe Plus |
Tearing Instability and Periodic Density Perturbations in the Slow Solar Wind In contrast with the fast solar wind, which originates in coronal holes, the source of the slow solar wind is still debated. Often intermittent and enriched with low first ionization potential elements\textemdashakin to what is observed in closed coronal loops\textemdashthe slow wind could form in bursty events nearby helmet streamers. Slow winds also exhibit density perturbations that have been shown to be periodic and could be associated with flux ropes ejected from the tip of helmet streamers, as shown recently by the ... RĂ©ville, Victor; Velli, Marco; Rouillard, Alexis; Lavraud, Benoit; Tenerani, Anna; Shi, Chen; Strugarek, Antoine; Published by: The Astrophysical Journal Published on: 05/2020 YEAR: 2020   DOI: 10.3847/2041-8213/ab911d Astrophysics - Solar and Stellar Astrophysics; Magnetohydrodynamics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Plasma astrophysics; Slow solar wind; Solar magnetic reconnection; Solar Probe Plus; Solar wind |
1