PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2023

New Observations of Solar Wind 1/f Turbulence Spectrum from Parker Solar Probe

The trace magnetic power spectrum in the solar wind is known to be characterized by a double power law at scales much larger than the proton gyro-radius, with flatter spectral exponents close to -1 found at the lower frequencies below an inertial range with indices closer to [-1.5, -1.67]. The origin of the 1/f range is still under debate. In this study, we selected 109 magnetically incompressible solar wind intervals (\ensuremath\delta\ensuremath\mid B \ensuremath\mid/\ensuremath\mid B \ensuremath\mid \ensuremath\ll 1) from ...

Huang, Zesen; Sioulas, Nikos; Shi, Chen; Velli, Marco; Bowen, Trevor; Davis, Nooshin; Chandran, B.~D.~G.; Matteini, Lorenzo; Kang, Ning; Shi, Xiaofei; Huang, Jia; Bale, Stuart; Kasper, J.~C.; Larson, Davin; Livi, Roberto; Whittlesey, P.~L.; Rahmati, Ali; Paulson, Kristoff; Stevens, M.; Case, A.~W.; de Wit, Thierry; Malaspina, David; Bonnell, J.~W.; Goetz, Keith; Harvey, Peter; MacDowall, Robert;

Published by: \apjl      Published on: jun

YEAR: 2023     DOI: 10.3847/2041-8213/acd7f2

Parker Data Used; Solar wind; interplanetary turbulence; Magnetohydrodynamics; Space plasmas; Heliosphere; Alfven waves; 1534; 830; 1964; 1544; 711; 23; Astrophysics - Solar and Stellar Astrophysics; Physics - Fluid Dynamics; Physics - Geophysics; Physics - Plasma Physics; Physics - Space Physics

2022

Thermal Energy Budget of Electrons in the Inner Heliosphere: Parker Solar Probe Observations

We present an observational analysis of the electron thermal energy budget using data from Parker Solar Probe. We use the macroscopic moments, obtained from our fits to the measured electron distribution function, to evaluate the thermal energy budget based on the second moment of the Boltzmann equation. We separate contributions to the overall budget from reversible and irreversible processes. We find that an irreversible thermal energy source must be present in the inner heliosphere over the heliocentric distance range fro ...

Abraham, Joel; Verscharen, Daniel; Wicks, Robert; Rueda, Jeffersson; Owen, Christopher; Nicolaou, Georgios; Jeong, Seong-Yeop;

Published by: \apj      Published on: dec

YEAR: 2022     DOI: 10.3847/1538-4357/ac9fd8

Parker Data Used; The Sun; Solar wind; Heliosphere; Plasma physics; 1693; 1534; 711; 2089; Astrophysics - Solar and Stellar Astrophysics; Physics - Geophysics; Physics - Plasma Physics; Physics - Space Physics

2021

Subproton-scale Intermittency in Near-Sun Solar Wind Turbulence Observed by the Parker Solar Probe

High time-resolution solar wind magnetic field data are employed to study statistics describing intermittency near the first perihelion (∼35.6 R) of the Parker Solar Probe mission. A merged data set employing two instruments on the FIELDS suite enables broadband estimation of higher-order moments of magnetic field increments, with five orders established with reliable accuracy. The duration, cadence, and low noise level of the data permit evaluation of scale dependence of the observed intermittency from the i ...

Chhiber, Rohit; Matthaeus, William; Bowen, Trevor; Bale, Stuart;

Published by: The Astrophysical Journal      Published on: 04/2021

YEAR: 2021     DOI: 10.3847/2041-8213/abf04e

Parker Data Used; Solar wind; interplanetary turbulence; Magnetohydrodynamics; Space plasmas; 1534; 830; 1964; 1544; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Geophysics; Physics - Plasma Physics

2019

Self-induced Scattering of Strahl Electrons in the Solar Wind

We investigate the scattering of strahl electrons by microinstabilities as a mechanism for creating the electron halo in the solar wind. We develop a mathematical framework for the description of electron-driven microinstabilities and discuss the associated physical mechanisms. We find that an instability of the oblique fast-magnetosonic/whistler (FM/W) mode is the best candidate for a microinstability that scatters strahl electrons into the halo. We derive approximate analytic expressions for the FM/W instability thresho ...

Verscharen, Daniel; Chandran, Benjamin; Jeong, Seong-Yeop; Salem, Chadi; Pulupa, Marc; Bale, Stuart;

Published by: The Astrophysical Journal      Published on: 12/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab4c30

Astrophysics - Solar and Stellar Astrophysics; instabilities; parker solar probe; Physics - Geophysics; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence; waves

2014

Magnetic field reversals and long-time memory in conducting flows

Dmitruk, P.; Mininni, P.~D.; Pouquet, A.; Servidio, S.; Matthaeus, W.~H.;

Published by: \pre      Published on: 10/2014

YEAR: 2014     DOI: 10.1103/PhysRevE.90.043010

Parker Data Used; 47.65.-d; 47.27.E-; 47.35.Tv; 91.25.Mf; Magnetohydrodynamics and electrohydrodynamics; Turbulence simulation and modeling; Magnetohydrodynamic waves; Magnetic field reversals: process and timescale; Physics - Fluid Dynamics; Astrophysics - Earth and Planetary Astrophysics; Physics - Geophysics; Physics - Plasma Physics



  1