PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2022

On the Conservation of Turbulence Energy in Turbulence Transport Models

Zank et al. developed models describing the transport of low-frequency incompressible and nearly incompressible turbulence in inhomogeneous flows. The formalism was based on expressing the fluctuating variables in terms of the Elsässar variables and then taking moments subject to various closure hypotheses. The turbulence transport models are different according to whether the plasma beta regime is large, of order unity, or small. Here, we show explicitly that the three sets of turbulence transport models admit a conser ...

Wang, B.; Zank, G.~P.; Adhikari, L.; Zhao, L.;

Published by: \apj      Published on: apr

YEAR: 2022     DOI: 10.3847/1538-4357/ac596e

Parker Data Used; Magnetohydrodynamics; interplanetary turbulence; 1964; 830; Physics - Plasma Physics; Astrophysics - High Energy Astrophysical Phenomena; Astrophysics - Solar and Stellar Astrophysics; Physics - Fluid Dynamics

2021

General Exact Law of Compressible Isentropic Magnetohydrodynamic Flows: Theory and Spacecraft Observations in the Solar Wind

Various forms of exact laws governing magnetohydrodynamic (MHD) turbulence have been derived either in the incompressibility limit, or for isothermal compressible flows. Here we propose a more general method that allows us to obtain such laws for any turbulent isentropic flow (i.e., constant entropy). We demonstrate that the known MHD exact laws (incompressible and isothermal) and the new (polytropic) one can be obtained as specific cases of the general law when the corresponding closure equation is stated. We also recover a ...

Simon, P.; Sahraoui, F.;

Published by: \apj      Published on: jul

YEAR: 2021     DOI: 10.3847/1538-4357/ac0337

Solar wind; Solar Physics; Parker Data Used; Magnetohydrodynamics; Plasma astrophysics; Plasma physics; interplanetary turbulence; 1534; 1476; 1964; 1261; 2089; 830; Physics - Plasma Physics; Physics - Fluid Dynamics

2018

Finite Dissipation in Anisotropic Magnetohydrodynamic Turbulence

Bandyopadhyay, Riddhi; Oughton, S.; Wan, M.; Matthaeus, W.~H.; Chhiber, R.; Parashar, T.~N.;

Published by: Physical Review X      Published on: 10/2018

YEAR: 2018     DOI: 10.1103/PhysRevX.8.041052

Parker Data Used; Physics - Plasma Physics; Physics - Fluid Dynamics; Physics - Space Physics

2014

Magnetic field reversals and long-time memory in conducting flows

Dmitruk, P.; Mininni, P.~D.; Pouquet, A.; Servidio, S.; Matthaeus, W.~H.;

Published by: \pre      Published on: 10/2014

YEAR: 2014     DOI: 10.1103/PhysRevE.90.043010

Parker Data Used; 47.65.-d; 47.27.E-; 47.35.Tv; 91.25.Mf; Magnetohydrodynamics and electrohydrodynamics; Turbulence simulation and modeling; Magnetohydrodynamic waves; Magnetic field reversals: process and timescale; Physics - Fluid Dynamics; Astrophysics - Earth and Planetary Astrophysics; Physics - Geophysics; Physics - Plasma Physics



  1