PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2021

Solar probe based autonomous solar tracker system-A review

The energy source which is becoming very popular nowadays is a sustainable energy source, because of the high cost and extinction of conventional fuels. One of the examples of renewable sources is solar energy. Solar energy is profusely in nature and inexhaustible energy resources around the world. The main challenge in the solar field is the less amount of solar energy captured by photovoltaic (PV) systems. To increase the efficiency of the solar power generation system we n ...

Kumar, Sarvesh; Pal, Ankur; Singh, Pallavi; Mittal, Sudhanshu; Kumar, Yatendra;

Published by: 2021 International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2021      Published on:

YEAR: 2021     DOI:

Photovoltaic cells; Solar energy; Solar power plants; Parker Engineering

2014

Predicting the solar probe plus solar array output

Predicting the output of the Solar Probe Plus (SPP) solar array presents unique challenges as the array operates at very high temperatures and irradiances, and has a water-cooled substrate. A further complication arises because, close to perihelion, each string operates at an irradiance and temperature different from the other strings. This paper provides the methodology and results for computing the output of the array over a range of irradiances from zero to seventy suns, temperatures from -80°C to 164°C, and angle ...

Gaddy, Edward; Butler, Michael; Lockwood, Mary; Martin, Gayle; Roufberg, Lew; Vigil, Cristina; Boca, Andreea; Richards, Benjamin; Stall, Rick; Schurman, Matthew;

Published by: 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014      Published on:

YEAR: 2014     DOI:

Aerospace engineering; Cell engineering; Photoelectrochemical cells; Photovoltaic cells; Probes; Satellites; Solar cell arrays; Sun; Parker Engineering

2013

UV-exposure experiments for the Solar Probe Plus array

NASA s Solar Probe Plus (SPP) will travel closer to the Sun than any previous spacecraft. During its 7-year, 24-orbit mission, SPP will make scientific measurements of the solar corona, reaching minimum perihelion at ∼9.5 solar radii (Rs) from the center of the Sun. The solar array wings powering the spacecraft will operate under wide-ranging temperature and irradiance conditions, of 0 to 27×AM0 and -70 to +160°C nominally, with transient off-nominal survivability required up to 80×AM0. Over th ...

Boca, Andreea; Blumenfeld, Philip; Crist, Kevin; De Zetter, Karen; Richards, Benjamin; Sarver, Charles; Sharps, Paul; Stall, Richard; Stan, Mark;

Published by: Conference Record of the IEEE Photovoltaic Specialists Conference      Published on:

YEAR: 2013     DOI:

NASA; Photovoltaic cells; Probes; Radiation effects; Solar cell arrays; Sun; Temperature distribution; Parker Engineering

2012

High-irradiance high-temperature vacuum testing of the Solar Probe Plus array design

The Solar Probe Plus (SPP) spacecraft will fly further into the Sun s corona than any previous mission, reaching a minimum perihelion at 9.5 solar radii from the center of the Sun. The solar arrays powering the spacecraft will operate under unusually high irradiances and temperatures. The array design, material choices, and necessary test facilities for SPP are therefore quite different from those used on traditional space panels. This paper gives an overview of the high-irradiance high-temperature vacuum (HIHT-Vac) reliabil ...

Boca, Andreea; Blumenfeld, Philip; Crist, Kevin; De Zetter, Karen; Mitchell, Richard; Richards, Benjamin; Sarver, Charles; Sharps, Paul; Stan, Mark; Tourino, Cory;

Published by: Conference Record of the IEEE Photovoltaic Specialists Conference      Published on:

YEAR: 2012     DOI:

Photovoltaic cells; Probes; Solar cell arrays; Sun; Parker Engineering



  1