Notice:
|
Found 2 entries in the Bibliography.
Showing entries from 1 through 2
2017 |
Interplanetary dust particle shielding capability of blanketed spacecraft honeycomb structure To assure mission success of the Solar Probe Plus (SPP) spacecraft, defined by achieving its final mission orbit with a perihelion distance of less than 10 solar radii, it is necessary to define the dust hypervelocity impact (HVI) protection levels provided by its Multi-Layer Insulation (MLI)/thermal blankets with a reliability that is on par with that available for metallic Whipple shields. Recently, we presented an experimentally validated approach being developed at the Johns Hopkins University Applied Physics Laboratory ... Iyer, Kaushik; Mehoke, Douglas; Batra, Romesh; Published by: IEEE Aerospace Conference Proceedings Published on: Aerospace vehicles; Aluminum; Ballistics; Coremaking; Dust; Honeycomb structures; Interplanetary flight; Orbits; Particle size; Particle size analysis; Sandwich structures; Sensitivity analysis; Shielding; Parker Engineering |
2014 |
Interplanetary dust particle shielding capability of spacecraft multi-layer insulation The Solar Probe Plus (SPP) spacecraft is expected to encounter unprecedented levels of interplanetary dust particle (IDP) exposure during its approximately 7-year journey. To assure mission success it is necessary to define the dust hypervelocity impact (HVI) protection levels provided by its Multi-Layer Insulation (MLI)/thermal blankets with a reliability that is on par with that available for metallic Whipple shields. Development of a new ballistic limit equation (BLE) in the 7-150 km/s HVI range for representative 2-wall ... Iyer, Kaushik; Mehoke, Douglas; Batra, Romesh; Published by: IEEE Aerospace Conference Proceedings Published on: Aluminum alloys; Ballistics; Dust; Fused silica; Particle size; Particle size analysis; Polyimides; Ternary alloys; Titanium alloys; Parker Engineering |
1