PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 20 entries in the Bibliography.


Showing entries from 1 through 20


2021

Evolution of Large-amplitude Alfv\ en Waves and Generation of Switchbacks in the Expanding Solar Wind

Motivated by recent Parker Solar Probe (PSP) observations of switchbacks (abrupt, large-amplitude reversals in the radial magnetic field, which exhibit Alfv\ enic correlations), we examine the dynamics of large-amplitude Alfv\ en waves in the expanding solar wind. We develop an analytic model that makes several predictions: switchbacks should preferentially occur in regions where the solar wind plasma has undergone a greater expansion, the switchback fraction at radii comparable to PSP should be an increasing function of ...

Mallet, Alfred; Squire, Jonathan; Chandran, Benjamin; Bowen, Trevor; Bale, Stuart;

Published by: \apj      Published on: sep

YEAR: 2021     DOI: 10.3847/1538-4357/ac0c12

Alfven waves; Magnetohydrodynamics; Solar wind; Space plasmas; 23; 1964; 1534; 1544; Parker Data Used

Using a Heliospheric Upwinding eXtrapolation (HUX) Technique to Magnetically Connect Different Regions of the Heliosphere

Understanding how coronal structure propagates and evolves from the Sun and into the heliosphere has been thoroughly explored using sophisticated MHD models. From these, we have a reasonably good working understanding of the dynamical processes that shape the formation and evolution of stream interaction regions and rarefactions, including their locations, orientations, and structure. However, given the technical expertise required to produce, maintain, and run global MHD models, their use has been relatively restricted. In ...

Riley, Pete; Issan, Opal;

Published by: Frontiers in Physics      Published on: may

YEAR: 2021     DOI: 10.3389/fphy.2021.679497

Heliosphere (711); Solar wind streams; coronal mass ejection; Magnetohydrodynamics; space weather

Flux conservation, radial scalings, Mach numbers, and critical distances in the solar wind: magnetohydrodynamics and Ulysses observations

One of the key challenges in solar and heliospheric physics is to understand the acceleration of the solar wind. As a super-sonic, super-Alfv\ enic plasma flow, the solar wind carries mass, momentum, energy, and angular momentum from the Sun into interplanetary space. We present a framework based on two-fluid magnetohydrodynamics to estimate the flux of these quantities based on spacecraft data independent of the heliocentric distance of the location of measurement. Applying this method to the Ulysses dataset allows us to st ...

Verscharen, Daniel; Bale, Stuart; Velli, Marco;

Published by: \mnras      Published on: jul

YEAR: 2021     DOI: 10.1093/mnras/stab2051

Solar wind; Sun: heliosphere; Magnetohydrodynamics; plasmas; methods: data analysis

General Exact Law of Compressible Isentropic Magnetohydrodynamic Flows: Theory and Spacecraft Observations in the Solar Wind

Various forms of exact laws governing magnetohydrodynamic (MHD) turbulence have been derived either in the incompressibility limit, or for isothermal compressible flows. Here we propose a more general method that allows us to obtain such laws for any turbulent isentropic flow (i.e., constant entropy). We demonstrate that the known MHD exact laws (incompressible and isothermal) and the new (polytropic) one can be obtained as specific cases of the general law when the corresponding closure equation is stated. We also recover a ...

Simon, P.; Sahraoui, F.;

Published by: \apj      Published on: jul

YEAR: 2021     DOI: 10.3847/1538-4357/ac0337

Solar wind; Solar Physics; Parker Data Used; Magnetohydrodynamics; Plasma astrophysics; Plasma physics; interplanetary turbulence; 1534; 1476; 1964; 1261; 2089; 830; Physics - Plasma Physics; Physics - Fluid Dynamics

Characteristics of Interplanetary Discontinuities in the Inner Heliosphere Revealed by Parker Solar Probe

We present a statistical analysis for the characteristics and spatial evolution of the interplanetary discontinuities (IDs) in the solar wind, from 0.13-0.9 au, by using the Parker Solar Probe measurements on Orbits 4 and 5. We collected 3948 IDs, including 2511 rotational discontinuities (RDs) and 557 tangential discontinuities (TDs), with the remnant unidentified. The statistical results show that (1) the ID occurrence rate decreases from 200 events per day at 0.13 au to 1 event per day at 0.9 au, following a spatial scali ...

Liu, Y.~Y.; Fu, H.~S.; Cao, J.~B.; Liu, C.~M.; Wang, Z.; Guo, Z.~Z.; Xu, Y.; Bale, S.~D.; Kasper, J.~C.;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac06a1

Interplanetary discontinuities; Solar wind; interplanetary magnetic fields; Magnetohydrodynamics; 820; 1534; 824; 1964; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Could Switchbacks Originate in the Lower Solar Atmosphere? II. Propagation of Switchbacks in the Solar Corona

The magnetic switchbacks observed recently by the Parker Solar Probe have raised the question about their nature and origin. One of the competing theories of their origin is the interchange reconnection in the solar corona. In this scenario, switchbacks are generated at the reconnection site between open and closed magnetic fields, and are either advected by an upflow or propagate as waves into the solar wind. In this paper we test the wave hypothesis, numerically modeling the propagation of a switchback, modeled as an embed ...

Magyar, Norbert; Utz, Dominik; Erdélyi, Robertus; Nakariakov, Valery;

Published by: The Astrophysical Journal      Published on: 06/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abfa98

Solar wind; Magnetohydrodynamics; Alfven waves; Solar Coronal Waves; Nonlinear regression; 1534; 1964; 23; 1995; 1948; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

Evolution of Solar Wind Turbulence from 0.1 to 1 au during the First Parker Solar Probe-Solar Orbiter Radial Alignment

The first radial alignment between Parker Solar Probe and Solar Orbiter spacecraft is used to investigate the evolution of solar wind turbulence in the inner heliosphere. Assuming ballistic propagation, two 1.5 hr intervals are tentatively identified as providing measurements of the same plasma parcels traveling from 0.1 to 1 au. Using magnetic field measurements from both spacecraft, the properties of turbulence in the two intervals are assessed. Magnetic spectral density, flatness, and high-order moment scaling laws are ca ...

Telloni, Daniele; Sorriso-Valvo, Luca; Woodham, Lloyd; Panasenco, Olga; Velli, Marco; Carbone, Francesco; Zank, Gary; Bruno, Roberto; Perrone, Denise; Nakanotani, Masaru; Shi, Chen; Amicis, Raffaella; De Marco, Rossana; Jagarlamudi, Vamsee; Steinvall, Konrad; Marino, Raffaele; Adhikari, Laxman; Zhao, Lingling; Liang, Haoming; Tenerani, Anna; Laker, Ronan; Horbury, Timothy; Bale, Stuart; Pulupa, Marc; Malaspina, David; MacDowall, Robert; Goetz, Keith; de Wit, Thierry; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Larson, Davin; Case, Anthony; Stevens, Michael; Whittlesey, Phyllis; Livi, Roberto; Owen, Christopher; Livi, Stefano; Louarn, Philippe; Antonucci, Ester; Romoli, Marco; Brien, Helen; Evans, Vincent; Angelini, Virginia;

Published by: The Astrophysical Journal      Published on: 05/2021

YEAR: 2021     DOI: 10.3847/2041-8213/abf7d1

Parker Data Used; Magnetohydrodynamics; Alfven waves; Space plasmas; interplanetary turbulence; Solar wind; 1964; 23; 1544; 830; 1534

Subproton-scale Intermittency in Near-Sun Solar Wind Turbulence Observed by the Parker Solar Probe

High time-resolution solar wind magnetic field data are employed to study statistics describing intermittency near the first perihelion (∼35.6 R) of the Parker Solar Probe mission. A merged data set employing two instruments on the FIELDS suite enables broadband estimation of higher-order moments of magnetic field increments, with five orders established with reliable accuracy. The duration, cadence, and low noise level of the data permit evaluation of scale dependence of the observed intermittency from the i ...

Chhiber, Rohit; Matthaeus, William; Bowen, Trevor; Bale, Stuart;

Published by: The Astrophysical Journal      Published on: 04/2021

YEAR: 2021     DOI: 10.3847/2041-8213/abf04e

Parker Data Used; Solar wind; interplanetary turbulence; Magnetohydrodynamics; Space plasmas; 1534; 830; 1964; 1544; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Geophysics; Physics - Plasma Physics

Could Switchbacks Originate in the Lower Solar Atmosphere? I. Formation Mechanisms of Switchbacks

The recent rediscovery of magnetic field switchbacks or deflections embedded in the solar wind flow by the Parker Solar Probe mission lead to a huge interest in the modeling of the formation mechanisms and origin of these switchbacks. Several scenarios for their generation were put forth, ranging from lower solar atmospheric origins by reconnection, to being a manifestation of turbulence in the solar wind, and so on. Here we study some potential formation mechanisms of magnetic switchbacks in the lower solar atmosphere, usin ...

Magyar, Norbert; Utz, Dominik; Erdélyi, Robertus; Nakariakov, Valery;

Published by: The Astrophysical Journal      Published on: 04/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abec49

Parker Data Used; Solar atmosphere; Solar Physics; Magnetohydrodynamics; 1477; 1476; 1964; Astrophysics - Solar and Stellar Astrophysics

2020

Magnetohydrodynamic Turbulent Evolution of a Magnetic Cloud in the Outer Heliosphere

Telloni, Daniele; Zhao, Lingling; Zank, Gary; Liang, Haoming; Nakanotani, Masaru; Adhikari, Laxman; Carbone, Francesco; Amicis, Raffaella; Perrone, Denise; Bruno, Roberto; Dasso, Sergio;

Published by: \apjl      Published on: 12/2020

YEAR: 2020     DOI: 10.3847/2041-8213/abcb03

Parker Data Used; Magnetohydrodynamics; interplanetary turbulence; Solar coronal mass ejections; interplanetary magnetic fields; Heliosphere; Solar wind; Solar magnetic reconnection; 1964; 830; 310; 824; 711; 1534; 1504

A Model for Coronal Inflows and In/Out Pairs

Lynch, Benjamin;

Published by: \apj      Published on: 12/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abc5b3

Active Solar Corona; Solar coronal streamers; Solar coronal transients; Solar magnetic fields; Solar magnetic reconnection; Magnetohydrodynamics; 1988; 1486; 312; 1503; 1504; 1964; Astrophysics - Solar and Stellar Astrophysics

Oblique Tearing Mode Instability: Guide Field and Hall Effect

Shi, Chen; Velli, Marco; Pucci, Fulvia; Tenerani, Anna; Innocenti, Maria;

Published by: \apj      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb6fa

Parker Data Used; Solar magnetic reconnection; Plasma physics; Magnetohydrodynamics; 1504; 2089; 1964; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

An Optimization Principle for Computing Stationary MHD Equilibria with Solar Wind Flow

Wiegelmann, Thomas; Neukirch, Thomas; Nickeler, Dieter; Chifu, Iulia;

Published by: \solphys      Published on: 10/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01719-8

magnetic fields; Corona; models; Magnetohydrodynamics; Velocity fields; Solar wind; Astrophysics - Solar and Stellar Astrophysics

Tearing Instability and Periodic Density Perturbations in the Slow Solar Wind

In contrast with the fast solar wind, which originates in coronal holes, the source of the slow solar wind is still debated. Often intermittent and enriched with low first ionization potential elements\textemdashakin to what is observed in closed coronal loops\textemdashthe slow wind could form in bursty events nearby helmet streamers. Slow winds also exhibit density perturbations that have been shown to be periodic and could be associated with flux ropes ejected from the tip of helmet streamers, as shown recently by the ...

Réville, Victor; Velli, Marco; Rouillard, Alexis; Lavraud, Benoit; Tenerani, Anna; Shi, Chen; Strugarek, Antoine;

Published by: The Astrophysical Journal      Published on: 05/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab911d

Astrophysics - Solar and Stellar Astrophysics; Magnetohydrodynamics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Plasma astrophysics; Slow solar wind; Solar magnetic reconnection; Solar Probe Plus; Solar wind

Small-scale Magnetic Flux Ropes in the First Two Parker Solar Probe Encounters

Small-scale magnetic flux ropes (SFRs) are a type of structure in the solar wind that possess helical magnetic field lines. In a recent report we presented the radial variations of the properties of SFRs from 0.29 to 8 au using in situ measurements from the Helios, Advanced Composition Explorer/WIND (ACE/Wind), Ulysses, and Voyager spacecrafts. With the launch of the Parker Solar Probe (PSP), we extend our previous investigation further into the inner heliosphere. We apply a Grad–Shafranov-based algorithm to identify SFRs ...

Chen, Yu; Hu, Qiang; Zhao, Lingling; Kasper, Justin; Bale, Stuart; Korreck, Kelly; Case, Anthony; Stevens, Michael; Bonnell, John; Goetz, Keith; Harvey, Peter; Klein, Kristopher; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Whittlesey, Phyllis;

Published by: The Astrophysical Journal      Published on:

YEAR: 2020     DOI: 10.3847/1538-4357/abb820

Solar wind; interplanetary turbulence; Magnetohydrodynamics; Astronomy data analysis; Astronomy databases; Parker Data Used

2019

No Evidence for Critical Balance in Field-aligned Alfv\ enic Solar Wind Turbulence

Telloni, Daniele; Carbone, Francesco; Bruno, Roberto; Sorriso-Valvo, Luca; Zank, Gary; Adhikari, Laxman; Hunana, Peter;

Published by: \apj      Published on: 12/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab517b

Parker Data Used; interplanetary turbulence; Solar wind; Space plasmas; Alfven waves; Interplanetary medium; Magnetohydrodynamics; 830; 1534; 1544; 23; 825; 1964

Ion Cyclotron Waves in Field-aligned Solar Wind Turbulence

Telloni, Daniele; Carbone, Francesco; Bruno, Roberto; Zank, Gary; Sorriso-Valvo, Luca; Mancuso, Salvatore;

Published by: \apjl      Published on: 11/2019

YEAR: 2019     DOI: 10.3847/2041-8213/ab4c44

Parker Data Used; Magnetohydrodynamics; Space plasmas; Solar wind; interplanetary turbulence; Alfven waves; 1964; 1544; 1534; 830; 23

Validation of MHD Model Predictions of the Corona with LASCO-C2 Polarized Brightness Images

Progress in our understanding of the solar corona requires that the results of advanced magnetohydrodynamic models driven by measured magnetic fields, and particularly the underlying heating models, be thoroughly compared with coronal observations. The comparison has so far mainly concerned the global morphology of the corona, synthetic images calculated from the models being compared with observed images. We go one step further by performing detailed quantitative comparisons between the calculated polarized radiance p B ...

Lamy, Philippe; Floyd, Olivier; Mikic, Zoran; Riley, Pete;

Published by: Solar Physics      Published on: 11/2019

YEAR: 2019     DOI: 10.1007/s11207-019-1549-9

Corona; Eclipses; LASCO; Magnetohydrodynamics; Observations; Parker Data Used; parker solar probe; quiet; Solar Probe Plus

2013

Generation of X-points and secondary islands in 2D magnetohydrodynamic turbulence

Wan, Minping; Matthaeus, William; Servidio, Sergio; Oughton, Sean;

Published by: Physics of Plasmas      Published on: 04/2013

YEAR: 2013     DOI: 10.1063/1.4802985

Parker Data Used; magnetic reconnection; plasma magnetohydrodynamics; plasma simulation; plasma turbulence; 52.30.Cv; 52.35.Ra; 52.35.Vd; 52.65.-y; Magnetohydrodynamics; plasma turbulence; magnetic reconnection; plasma simulation

Theory of magnetic field line random walk in noisy reduced magnetohydrodynamic turbulence

Ruffolo, D.; Matthaeus, W.~H.;

Published by: Physics of Plasmas      Published on: 01/2013

YEAR: 2013     DOI: 10.1063/1.4789606

Parker Data Used; plasma fluctuations; plasma magnetohydrodynamics; plasma simulation; plasma transport processes; plasma turbulence; random processes; Solar corona; stochastic processes; 52.25.Fi; 05.40.Fb; 52.30.Cv; 52.35.Ra; 52.65.Kj; 52.25.Gj; Transport properties; Random walks and Levy flights; Magnetohydrodynamics; plasma turbulence; Magnetohydrodynamic and fluid equation; Fluctuation and chaos phenomena



  1