Notice:
|
Found 20 entries in the Bibliography.
Showing entries from 1 through 20
2020 |
Parker solar probe mission design A mission to the sun originally called Solar Probe was first considered in 1958 and stayed in concept and feasibility studies for five decades until 2007, when a new mission design was created that changed the original mission architecture. The re-designed mission was named Solar Probe Plus due to significant advantages in technical implementation and science return, and it was renamed Parker Solar Probe (PSP) in 2017. PSP was launched on August 12, 2018 as the first mission to touch the Sun. This paper presents an overview ... Published by: Advances in the Astronautical Sciences Published on: Astrophysics; Atomic absorption spectrometry; Interplanetary flight; Parker Engineering |
2019 |
Execution of Parker solar probe s unprecedented flight to the sun and early results Parker Solar Probe (PSP) was launched on August 12, 2018, on its way to enter the solar corona and "touch" the Sun for the first time. We utilize enormous planetary gravity assists from 7 repeated Venus flybys via a V7GA trajectory in 24 solar orbits over 7 years, to get within 8.86 solar radii from the Sun s surface. The probe successfully entered the V7GA trajectory and made the first Venus flyby only 52 days after launch. Five weeks later it flew by the Sun at a perihelion distance of 0.166 AU and fl ... Guo, Yanping; Thompson, Paul; Wirzburger, John; Pinkine, Nick; Bushman, Stewart; Goodson, Troy; Haw, Rob; Hudson, James; Jones, Drew; Kijewski, Seth; Lathrop, Brian; Lau, Eunice; Mottinger, Neil; Ryne, Mark; Shyong, Wen-Jong; Valerino, Powtawche; Whittenburg, Karl; Published by: Proceedings of the International Astronautical Congress, IAC Published on: Interplanetary flight; Navigation; Orbits; Space flight; Parker Engineering |
2017 |
Interplanetary dust particle shielding capability of blanketed spacecraft honeycomb structure To assure mission success of the Solar Probe Plus (SPP) spacecraft, defined by achieving its final mission orbit with a perihelion distance of less than 10 solar radii, it is necessary to define the dust hypervelocity impact (HVI) protection levels provided by its Multi-Layer Insulation (MLI)/thermal blankets with a reliability that is on par with that available for metallic Whipple shields. Recently, we presented an experimentally validated approach being developed at the Johns Hopkins University Applied Physics Laboratory ... Iyer, Kaushik; Mehoke, Douglas; Batra, Romesh; Published by: IEEE Aerospace Conference Proceedings Published on: Aerospace vehicles; Aluminum; Ballistics; Coremaking; Dust; Honeycomb structures; Interplanetary flight; Orbits; Particle size; Particle size analysis; Sandwich structures; Sensitivity analysis; Shielding; Parker Engineering |
Flight software verification methods in frontier radio for solar probe plus mission Success of deep space missions requires comprehensive performance verification for all hardware and software systems on the spacecraft over a broad scope of conditions and configurations, including the telecommunications subsystem. NASA Solar Probe Plus mission uses a software-defined radio for its telecommunications; thus a dedicated suite of tests are required for verification of the radio software in addition to traditional hardware verification procedures. Frontier Radio, developed by Johns Hopkins University Applied Phy ... Kufahl, Katelyn; Wortman, Kristin; Burke, Linda; Hennawy, Joseph; Adams, Norman; Sheehi, Joseph; Published by: IEEE Aerospace Conference Proceedings Published on: Computer software selection and evaluation; Digital radio; Digital signal processing; Instrument testing; Interplanetary flight; NASA; Probes; radio receivers; Software radio; Verification; Parker Engineering |
Advancements in hardware design for the frontier radio used for the solar probe plus mission The Frontier Radio for the Solar Probe Plus mission offers a host of hardware design and manufacturing improvements. These improvements build on the technology readiness level (TRL)-9 radio platform that was flown on the Van Allen Probes mission in a duplexed S-band configuration and several development tasks funded by NASA Headquarters. Prior RF slice designs consisted of two separate circuit boards: one for lower frequencies and one for high-frequencies; advances in technology enabled the use of a high-frequency multilayer ... Angert, Matthew; Bubnash, Brian; Hearty, Ryan; Neill, Michael; Ling, Sharon; Matlin, Daniel; Cheng, Sheng; Published by: IEEE Aerospace Conference Proceedings Published on: Digital signal processing; Field programmable gate arrays (FPGA); Integrated circuit design; Interplanetary flight; Magnesium alloys; Manufacture; NASA; Probes; Random access storage; Parker Engineering |
Development of a flight qualified ka-band multi-chip module for the solar probe plus mission The Johns Hopkins University Applied Physics Lab (JHU/APL) has developed a flight qualified, hermetically sealed, I/Q modulator Ka-band Multi-chip Module (MCM). Prototypes of this device have been developed over the years, but Solar Probe Plus (SPP) will be the first mission to use a flight qualified version of the MCM. This MCM enables a first for a deep-space mission: primary science data downlink with simultaneous data and navigation over Ka-band. SPP will also be the first JHU/APL mission to use Ka-band for downlink. The ... Matlin, Daniel; Sharma, Avinash; Angert, Matthew; Cheng, Sheng; Lehtonen, John; Published by: IEEE Aerospace Conference Proceedings Published on: Commercial off-the-shelf; Electronic equipment testing; Gallium arsenide; III-V semiconductors; Interplanetary flight; Monolithic microwave integrated circuits; NASA; Probes; Parker Engineering |
2016 |
A theoretical analysis of Ka-band turnaround noise in radios used for deep space comm/Nav Deep-space missions typically use a radio link between the Deep Space Network (DSN) ground stations and the spacecraft to transmit telemetry data and to generate the range and Doppler shift measurements that enable precise navigation. The amount of carrier phase noise present in this radio link is an important metric of performance, and radios are often designed to minimize the impact of this noise. From a communication perspective, more noise causes an increase in the system s frame-error rate, and from a navigation perspec ... Duven, Dennis; Jensen, Bob; Mitch, Ryan; Kinman, Peter; Published by: IEEE Aerospace Conference Proceedings Published on: Doppler effect; Errors; Interplanetary flight; NASA; Phase noise; Radio links; Scintillation; thermal noise; Parker Engineering |
Enabling coherent Ka-band downlink with a software-defined radio The migration to Ka-band for science downlink on deep space missions increases data rates significantly, but also presents new challenges to radio and RF system designers. One challenge is to maintain low carrier phase noise on a coherent downlink. Thermal noise on the X-band uplink that is within the bandwidth of the carrier recovery process modulates the phase of the coherent downlink. For missions that use X-band for command uplink and Ka-band for science downlink, such as the NASA Solar Probe Plus mission, the ratio of d ... Adams, Norman; Angert, Matthew; Copeland, David; Haskins, Christopher; Published by: IEEE Aerospace Conference Proceedings Published on: Additive noise; Interplanetary flight; NASA; Radio navigation; Software radio; Parker Engineering |
The Frontier software-defined radio for the solar probe plus mission The latest adaptation of the Frontier Radio, an X/Ka-band deep space implementation, has been transitioned into a finished product for Solar Probe Plus (SPP) and future missions. Leveraging the technology readiness level (TRL) 9 software-defined radio (SDR) platform successfully flown on the Van Allen Probes (VAP) mission, the Frontier Radio now brings a low-power, low-mass, yet highly radiation-tolerant and robust SDR to deep space applications. This implementation brings with it a suite of enhanced capabilities and improve ... Haskins, Christopher; Angert, Matthew; Sheehi, Joseph; Millard, Wesley; Adams, Norman; Hennawy, Joseph; Published by: IEEE Aerospace Conference Proceedings Published on: Analog circuits; Application programs; Firmware; Interplanetary flight; Ionizing radiation; Manufacture; Power amplifiers; Probes; radio; radio receivers; signal processing; Space applications; Parker Engineering |
Solar Probe Plus Spacecraft Flight Software requirements verification test framework Comprehensive Spacecraft Flight Software requirements verification is essential to the success of deep space missions. NASA s Solar Probe Plus (SPP) Spacecraft Flight Software and requirement verification activities are being implemented by Johns Hopkins University Applied Physics Laboratory (JHU/APL) located in Laurel, MD. JHU/APL s software development process for a critical mission requires an independent verification of all Spacecraft Flight Software requirements. The complexity of SPP s Spacecraft Flight Software and th ... Jacobs, Samantha; Wortman, Kristin; Published by: IEEE Aerospace Conference Proceedings Published on: Flight control systems; Formal verification; Interplanetary flight; NASA; Probes; Program debugging; Requirements engineering; Software design; Spacecraft; Parker Engineering |
2015 |
As part of a larger effort led by the Keck Institute for Space Studies at the California Institute of Technology, the Advanced Concepts Office at NASA’s George C. Marshall Space Flight Center conducted a study to assess what low-thrust advanced propulsion system candidates, existing and near term, could deliver a small, Voyager-like satellite to our solar system’s heliopause, approximately 100 AU from the center of the sun, within 10 years and within a 2025 to 2035 launch window. The advanced propulsion system tr ... Hopkins, Randall; Thomas, Herbert; Wiegmann, Bruce; Heaton, Andrew; Johnson, Les; Baysinger, Michael; Beers, Benjamin; Published by: AIAA SPACE 2015 Conference and Exposition Published on: Antennas; Earth (planet); Hall effect devices; Hall thrusters; Heat shielding; Interplanetary flight; NASA; Small satellites; Solar equipment; Solar radiation; Sun; Tetherlines; Trajectories; Parker Engineering |
2014 |
Optimization of deep-space Ka-band link schedules Downlink scheduling methods that minimize either contact time or data latency are described. For deep-space missions these two methods yield very different schedules. Optimal scheduling algorithms are straightforward for ideal mission scenarios. In practice, additional schedule requirements preclude a tractable optimal algorithm. In lieu of an optimal solution, an iterative sub-optimal algorithm is described. These methods are motivated in part by a need to balance mission risk, which increases with data latency, and mission ... Adams, Norman; Copeland, David; Mick, Alan; Pinkine, Nickalaus; Published by: IEEE Aerospace Conference Proceedings Published on: |
Aerogravity assist is an orbital transfer technique that enhances the effect of gravity assist maneuvers by utilizing aerodynamic lift in addition to gravity. This enables greater turning angles from a planetary assist, potentially cutting years off a conventional gravity assisted trajectory with multiple flybys or significantly reducing required launch C Published by: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2014 Published on: Aerodynamics; Automobile cooling systems; Cooling; Interplanetary flight; Orbital transfer; Orbits; Probes; Parker Engineering |
Solar probe plus solar array cooling system T-Vac test The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building the Solar Probe Plus (SPP) spacecraft and managing the project for NASA s Living with a Star (LWS) program. The main objectives of the SPP mission are to understand the Sun s coronal magnetic field, the causes of solar corona and solar wind heating and acceleration, and the mechanisms of energetic particles acceleration and transportation. To achieve these objectives, the SPP spacecraft needs to make in-situ measurements in ... Published by: 28th Space Simulation Conference - Extreme Environments: Pushing the Boundaries Published on: Cooling systems; Interplanetary flight; NASA; Probes; Software testing; Solar energy; Spacecraft; Thermoelectric equipment; Waste heat; Parker Engineering |
2013 |
Solar Probe Plus mission overview Solar Probe Plus will be the first mission to pass into the solar corona to study how the corona is heated and the solar wind is accelerated. Solving these two fundamental mysteries has been a top-priority science goal for over five decades. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is managing the mission for NASA s Living with a Star Program, including the development, build, and operation of the spacecraft. SPP will launch in 2018, performing 24 orbits of the Sun over a 7-year duration. ... Reynolds, Edward; Driesman, Andrew; Kinnison, James; Lockwood, Mary; Hill, Patrick; Published by: AIAA Guidance, Navigation, and Control (GNC) Conference Published on: Carbon; Foams; Heat shielding; Interplanetary flight; NASA; Probes; Solar cell arrays; Solar energy; Spacecraft; Temperature; Thermal insulating materials; Parker Engineering |
2012 |
Solar probe plus mission definition Solar Probe Plus will be the first mission to touch the Sun - To fly into the solar corona to study how the corona is heated and the solar wind is accelerated. Solving these two fundamental mysteries has been a top-priority science goal for over five decades. Thanks to an innovative design, emerging technology developments and completion of a successful Phase A, answers to these critical questions will soon be achieved. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building the ... Lockwood, Mary; Kinnison, James; Fox, Nicola; Conde, Richard; Driesman, Andrew; Published by: Proceedings of the International Astronautical Congress, IAC Published on: Carbon; Foams; Heating; Interplanetary flight; magnetic fields; Microwave antennas; NASA; Probes; Remote sensing; Research laboratories; Solar cell arrays; Solar radiation; Solar wind; Temperature; Parker Engineering |
A review of the Solar Probe Plus dust protection approach The Solar Probe Plus (SPP) spacecraft will go closer to the Sun than any manmade object has gone before, which has required the development of new thermal and micrometeoroid protection technologies. During the 24 solar orbits of the mission, the spacecraft will encounter a thermal environment that is 50 times more severe than any previous spacecraft. It will also travel through a dust environment previously unexplored, and be subject to particle hypervelocity impacts (HVI) at velocities much larger than anything previously e ... Mehoke, Douglas; Brown, Robert; Swaminathan, P.K.; Kerley, Gerald; Carrasco, Cesar; Iyer, Kaushik; Published by: IEEE Aerospace Conference Proceedings Published on: Dust; Earth (planet); Interplanetary flight; Particle size analysis; Probes; Space debris; Spacecraft; Parker Engineering |
Hyper velocity protection developments on the solar probe plus mission The Solar Probe Plus (SPP) spacecraft will go closer to the Sun than any manmade object has gone before. The mission includes both solar flux and micrometeoroid environments much more severe than anything experienced by previous spacecraft. As a result, new analytical and testing methodologies are being developed to ensure the success of the mission. One of the major efforts is the development of an analytical approach for hypervelocity impacts (HVI) at speeds up to 300 km/s. To date, this dust study has made several notable ... Mehoke, Douglas; Swaminathan, P.K.; Carrasco, Cesar; Brown, Robert; Iyer, Kaushik; Published by: Proceedings of the International Astronautical Congress, IAC Published on: Cooling systems; Dust; Earth (planet); Equations of state; Interplanetary flight; Probes; Thermoelectric equipment; Parker Engineering |
2011 |
Solar Probe Plus, mission update Solar Probe Plus (SPP) will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top-priority science goals for over five decades. Thanks to an innovative design, emerging technology developments and a significant risk reducing engineering development program these critical goals will soon be achieved. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building th ... Morse, Brian; Kinnison, James; Lockwood, Mary; Reynolds, Edward; Fox, Nicola; Published by: 62nd International Astronautical Congress 2011, IAC 2011 Published on: Carbon; Heating; Instrument testing; Interplanetary flight; magnetic fields; Microwave antennas; NASA; Probes; Solar cell arrays; Solar radiation; Solar wind; Temperature; Parker Engineering |
2010 |
Solar probe plus, a historic mission to the sun Solar Probe Plus (SPP) will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top-priority science goals for decades. Thanks to an innovative design, emerging technology developments and a significant risk reducing engineering development program these critical goals will soon be achieved. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building the Solar Pr ... Kinnison, James; Morse, Brian; Lockwood, Mary; Reynolds, Edward; Decker, Robert; Published by: 61st International Astronautical Congress 2010, IAC 2010 Published on: Carbon; Interplanetary flight; magnetic fields; Microwave antennas; NASA; Probes; Solar cell arrays; Solar wind; Temperature; Parker Engineering |
1