PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2021

A New View of the Solar Interface Region from the Interface Region Imaging Spectrograph (IRIS)

The Interface Region Imaging Spectrograph (IRIS) has been obtaining near- and far-ultraviolet images and spectra of the solar atmosphere since July 2013. IRIS is the highest resolution observatory to provide seamless coverage of spectra and images from the photosphere into the low corona. The unique combination of near- and far-ultraviolet spectra and images at sub-arcsecond resolution and high cadence allows the tracing of mass and energy through the critical interface between the surface and the corona or solar wind. IRIS ...

De Pontieu, Bart; Polito, Vanessa; Hansteen, Viggo; Testa, Paola; Reeves, Katharine; Antolin, Patrick; Nóbrega-Siverio, Daniel; Kowalski, Adam; Martinez-Sykora, Juan; Carlsson, Mats; McIntosh, Scott; Liu, Wei; Daw, Adrian; Kankelborg, Charles;

Published by: Solar Physics      Published on: 05/2021

YEAR: 2021     DOI: 10.1007/s11207-021-01826-0

Heating; chromospheric; coronal; chromosphere; models; active; Corona; magnetic fields; chromosphere; Instrumentation and data management; Spectrum; ultraviolet; Astrophysics - Solar and Stellar Astrophysics

Upflows in the Upper Solar Atmosphere

Spectroscopic observations at extreme- and far-ultraviolet wavelengths have revealed systematic upflows in the solar transition region and corona. These upflows are best seen in the network structures of the quiet Sun and coronal holes, boundaries of active regions, and dimming regions associated with coronal mass ejections. They have been intensively studied in the past two decades because they are likely to be closely related to the formation of the solar wind and heating of the upper solar atmosphere. We present an overvi ...

Tian, Hui; Harra, Louise; Baker, Deborah; Brooks, David; Xia, Lidong;

Published by: Solar Physics      Published on: 03/2021

YEAR: 2021     DOI: 10.1007/s11207-021-01792-7

Active regions; velocity field; Coronal holes; coronal mass ejections; low coronal signatures; Heating; coronal; Spectral line; broadening; Astrophysics - Solar and Stellar Astrophysics

2015

Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ...

Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary;

Published by: Space Science Reviews      Published on: 10/2015

YEAR: 2015     DOI: 10.1007/s11214-015-0206-3

Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP

2012

Solar probe plus mission definition

Solar Probe Plus will be the first mission to touch the Sun - To fly into the solar corona to study how the corona is heated and the solar wind is accelerated. Solving these two fundamental mysteries has been a top-priority science goal for over five decades. Thanks to an innovative design, emerging technology developments and completion of a successful Phase A, answers to these critical questions will soon be achieved. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building the ...

Lockwood, Mary; Kinnison, James; Fox, Nicola; Conde, Richard; Driesman, Andrew;

Published by: Proceedings of the International Astronautical Congress, IAC      Published on:

YEAR: 2012     DOI:

Carbon; Foams; Heating; Interplanetary flight; magnetic fields; Microwave antennas; NASA; Probes; Remote sensing; Research laboratories; Solar cell arrays; Solar radiation; Solar wind; Temperature; Parker Engineering

2011

Solar Probe Plus, mission update

Solar Probe Plus (SPP) will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top-priority science goals for over five decades. Thanks to an innovative design, emerging technology developments and a significant risk reducing engineering development program these critical goals will soon be achieved. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building th ...

Morse, Brian; Kinnison, James; Lockwood, Mary; Reynolds, Edward; Fox, Nicola;

Published by: 62nd International Astronautical Congress 2011, IAC 2011      Published on:

YEAR: 2011     DOI:

Carbon; Heating; Instrument testing; Interplanetary flight; magnetic fields; Microwave antennas; NASA; Probes; Solar cell arrays; Solar radiation; Solar wind; Temperature; Parker Engineering



  1