PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 159 entries in the Bibliography.


Showing entries from 1 through 50


2021

Magnetic field line random walk and solar energetic particle path lengths. Stochastic theory and PSP/IS⊙IS observations

Context. In 2020 May-June, six solar energetic ion events were observed by the Parker Solar Probe/IS⊙IS instrument suite at ≈0.35 AU from the Sun. From standard velocity-dispersion analysis, the apparent ion path length is ≈0.625 AU at the onset of each event.
Aims: We develop a formalism for estimating the path length of random-walking magnetic field lines to explain why the apparent ion path length at an event onset greatly exceeds the radial distance from the Sun for these events.
Methods: We developed ...

Chhiber, R.; Matthaeus, W.; Cohen, C.; Ruffolo, D.; Sonsrettee, W.; Tooprakai, P.; Seripienlert, A.; Chuychai, P.; Usmanov, A.; Goldstein, M.; McComas, D.; Leske, R.; Szalay, J.; Joyce, C.; Cummings, A.; Roelof, E.; Christian, E.; Mewaldt, R.; Labrador, A.; Giacalone, J.; Schwadron, N.; Mitchell, D.; Hill, M.; Wiedenbeck, M.; McNutt, R.; Desai, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039816

turbulence; Solar wind; Sun: magnetic fields; diffusion; Sun: flares; acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics; Parker Data Used

Applicability of Taylor s hypothesis during Parker Solar Probe perihelia

We investigate the validity of Taylor s hypothesis (TH) in the analysis of velocity and magnetic field fluctuations in Alfvénic solar wind streams measured by Parker Solar Probe (PSP) during the first four encounters. The analysis is based on a recent model of the spacetime correlation of magnetohydrodynamic (MHD) turbulence, which has been validated in high-resolution numerical simulations of strong reduced MHD turbulence. We use PSP velocity and magnetic field measurements from 24 h intervals selected from each of the fir ...

Perez, Jean; Bourouaine, Sofiane; Chen, Christopher; Raouafi, Nour;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039879

Solar wind; Sun: heliosphere; turbulence; magnetohydrodynamics (MHD); plasmas; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics; Parker Data Used

Alfvénic versus non-Alfvénic turbulence in the inner heliosphere as observed by Parker Solar Probe

Context. Parker Solar Probe (PSP) measures the magnetic field and plasma parameters of the solar wind at unprecedentedly close distances to the Sun. These data provide great opportunities to study the early-stage evolution of magnetohydrodynamic (MHD) turbulence in the solar wind.
Aims: In this study, we make use of the PSP data to explore the nature of solar wind turbulence focusing on the Alfvénic character and power spectra of the fluctuations and their dependence on the distance and context (i.e., large-scale sol ...

Shi, C.; Velli, M.; Panasenco, O.; Tenerani, A.; Réville, V.; Bale, S.; Kasper, J.; Korreck, K.; Bonnell, J.; de Wit, Dudok; Malaspina, D.; Goetz, K.; Harvey, P.; MacDowall, R.; Pulupa, M.; Case, A.; Larson, D.; Verniero, J.; Livi, R.; Stevens, M.; Whittlesey, P.; Maksimovic, M.; Moncuquet, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039818

turbulence; magnetohydrodynamics (MHD); Solar wind; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

The contribution of alpha particles to the solar wind angular momentum flux in the inner heliosphere

Context. An accurate assessment of the Sun s angular momentum (AM) loss rate is an independent constraint for models that describe the rotation evolution of Sun-like stars.
Aims: In situ measurements of the solar wind taken by Parker Solar Probe (PSP), at radial distances of ~28−55 R, are used to constrain the solar wind AM-loss rate. For the first time with PSP, this includes a measurement of the alpha particle contribution.
Methods: The mechanical AM flux in the solar wind protons (core and be ...

Finley, A.; McManus, M.; Matt, S.; Kasper, J.; Korreck, K.; Case, A.; Stevens, M.; Whittlesey, P.; Larson, D.; Livi, R.; Bale, S.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039288

Solar wind; stars: evolution; stars: winds; outflows; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

Detection of small magnetic flux ropes from the third and fourth Parker Solar Probe encounters

Context.
Aims: We systematically search for magnetic flux rope structures in the solar wind to within the closest distance to the Sun of ~0.13 AU, using data from the third and fourth orbits of the Parker Solar Probe.
Methods: We extended our previous magnetic helicity-based technique of identifying magnetic flux rope structures. The method was improved upon to incorporate the azimuthal flow, which becomes larger as the spacecraft approaches the Sun.
Results: A total of 21 and 34 magnetic flux ropes are ...

Zhao, L.; Zank, G.; Hu, Q.; Telloni, D.; Chen, Y.; Adhikari, L.; Nakanotani, M.; Kasper, J.; Huang, J.; Bale, S.; Korreck, K.; Case, A.; Stevens, M.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Larson, D.; Livi, R.; Whittlesey, P.; Klein, K.; Raouafi, N.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039298

Solar wind; Sun: magnetic fields; turbulence; methods: observational; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

The active region source of a type III radio storm observed by Parker Solar Probe during encounter 2

Context. We investigated the source of a type III radio burst storm during encounter 2 of NASA s Parker Solar Probe (PSP) mission.
Aims: It was observed that in encounter 2 of NASA s PSP mission there was a large amount of radio activity and, in particular, a noise storm of frequent, small type III bursts from 31 March to 6 April 2019. Our aim is to investigate the source of these small and frequent bursts.
Methods: In order to do this, we analysed data from the Hinode EUV Imaging Spectrometer, PSP FIELDS, and ...

Harra, L.; Brooks, D.; Bale, S.; Mandrini, C.; Barczynski, K.; Sharma, R.; Badman, S.; Domínguez, Vargas; Pulupa, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039514

Sun: corona; Solar wind; Sun: radio radiation; Sun: abundances; Sun: atmosphere; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Periodicities in an active region correlated with Type III radio bursts observed by Parker Solar Probe

Context. Periodicities have frequently been reported across many wavelengths in the solar corona. Correlated periods of ~5 min, comparable to solar p-modes, are suggestive of coupling between the photosphere and the corona.
Aims: Our study investigates whether there are correlations in the periodic behavior of Type III radio bursts which are indicative of nonthermal electron acceleration processes, and coronal extreme ultraviolet (EUV) emission used to assess heating and cooling in an active region when there are no l ...

Cattell, Cynthia; Glesener, Lindsay; Leiran, Benjamin; Dombeck, John; Goetz, Keith; Oliveros, Juan; Badman, Samuel; Pulupa, Marc; Bale, Stuart;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039510

Sun: radio radiation; Sun: corona; Sun: X-rays; gamma rays; Sun: oscillations; magnetic reconnection; radiation mechanisms: non-thermal; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Direct evidence for magnetic reconnection at the boundaries of magnetic switchbacks with Parker Solar Probe

Context. The first encounters of Parker Solar Probe (PSP) with the Sun revealed the presence of ubiquitous localised magnetic deflections in the inner heliosphere; these structures, often called switchbacks, are particularly striking in solar wind streams originating from coronal holes.
Aims: We report the direct piece of evidence for magnetic reconnection occurring at the boundaries of three switchbacks crossed by PSP at a distance of 45 to 48 solar radii to the Sun during its first encounter.
Methods: We anal ...

Froment, C.; Krasnoselskikh, V.; de Wit, Dudok; Agapitov, O.; Fargette, N.; Lavraud, B.; Larosa, A.; Kretzschmar, M.; Jagarlamudi, V.; Velli, M.; Malaspina, D.; Whittlesey, P.; Bale, S.; Case, A.; Goetz, K.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Mozer, F.; Pulupa, M.; Revillet, C.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039806

Sun: heliosphere; Solar wind; magnetic fields; magnetic reconnection; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Switchbacks: statistical properties and deviations from Alfvénicity

Context. Parker Solar Probe s first solar encounter has revealed the presence of sudden magnetic field deflections in the slow Alfvénic solar wind. These structures, which are often called switchbacks, are associated with proton velocity enhancements.
Aims: We study their statistical properties with a special focus on their boundaries.
Methods: Using data from SWEAP and FIELDS, we investigate particle and wavefield properties. The magnetic boundaries are analyzed with the minimum variance technique.
Res ...

Larosa, A.; Krasnoselskikh, V.; de Wit, Dudok; Agapitov, O.; Froment, C.; Jagarlamudi, V.; Velli, M.; Bale, S.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Revillet, C.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039442

Solar wind; magnetic fields; waves; magnetohydrodynamics (MHD); Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Stellar versus Galactic: the intensity of cosmic rays at the evolving Earth and young exoplanets around Sun-like stars

Energetic particles, such as stellar cosmic rays, produced at a heightened rate by active stars (like the young Sun) may have been important for the origin of life on Earth and other exoplanets. Here, we compare, as a function of stellar rotation rate (Ω), contributions from two distinct populations of energetic particles: stellar cosmic rays accelerated by impulsive flare events and Galactic cosmic rays. We use a 1.5D stellar wind model combined with a spatially 1D cosmic ray transport model. We formulate the evolution of ...

Rodgers-Lee, D.; Taylor, A.; Vidotto, A.; Downes, T.;

Published by: Monthly Notices of the Royal Astronomical Society      Published on: 06/2021

YEAR: 2021     DOI: 10.1093/mnras/stab935

diffusion; methods: numerical; Sun: evolution; stars: magnetic field; cosmic rays; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Astrophysics - High Energy Astrophysical Phenomena

Turbulent Proton Heating Rate in the Solar Wind from 545 R

Various remote sensing observations have been used so far to probe the turbulent properties of the solar wind. Using the recently reported density modulation indices that are derived using angular broadening observations of Crab Nebula during 19522013, we measured the solar wind proton heating using the kinetic Alfvn wave dispersion equation. The estimated heating rates vary from 1.58 1014 to 1.01 108 erg cm3 s1 in the heliocentric distance range of 545 R. Further, we found that he ...

Raja, Sasikumar; Subramanian, Prasad; Ingale, Madhusudan; Ramesh, R.; Maksimovic, Milan;

Published by: The Astrophysical Journal      Published on: 06/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abfcd1

Solar wind; Radio occultation; 1534; 1351; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Could Switchbacks Originate in the Lower Solar Atmosphere? II. Propagation of Switchbacks in the Solar Corona

The magnetic switchbacks observed recently by the Parker Solar Probe have raised the question about their nature and origin. One of the competing theories of their origin is the interchange reconnection in the solar corona. In this scenario, switchbacks are generated at the reconnection site between open and closed magnetic fields, and are either advected by an upflow or propagate as waves into the solar wind. In this paper we test the wave hypothesis, numerically modeling the propagation of a switchback, modeled as an embed ...

Magyar, Norbert; Utz, Dominik; Erdélyi, Robertus; Nakariakov, Valery;

Published by: The Astrophysical Journal      Published on: 06/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abfa98

Solar wind; Magnetohydrodynamics; Alfven waves; Solar Coronal Waves; Nonlinear regression; 1534; 1964; 23; 1995; 1948; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

Using Parker Solar Probe observations during the first four perihelia to constrain global magnetohydrodynamic models

Context. Parker Solar Probe (PSP) is providing an unprecedented view of the Sun s corona as it progressively dips closer into the solar atmosphere with each solar encounter. Each set of observations provides a unique opportunity to test and constrain global models of the solar corona and inner heliosphere and, in turn, use the model results to provide a global context for interpreting such observations.
Aims: In this study, we develop a set of global magnetohydrodynamic (MHD) model solutions of varying degrees of soph ...

Riley, Pete; Lionello, Roberto; Caplan, Ronald; Downs, Cooper; Linker, Jon; Badman, Samuel; Stevens, Michael;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039815

Sun: corona; Sun: heliosphere; Sun: magnetic fields; Solar wind; Sun: evolution; Interplanetary medium; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

Large Amplitude Switchback Turbulence: Possible Magnetic Velocity Alignment Structures

Switchbacks are widely acknowledged phenomena observed by the Parker Solar Probe and appear to occur in patches. Previous studies focused on the fluctuations at the magnetic reversals. However, the nature of the fluctuations inside the switchbacks remains unknown. Here we utilize the magnetic field data and plasma data measured by the Parker Solar Probe in the first four encounters. We investigate the fluctuations in the switchback intervals of 100 s with $B_R 0$ at every instant and compare them to the fluctuations in the n ...

Wu, Honghong; Tu, Chuanyi; Wang, Xin; Yang, Liping;

Published by: The Astrophysical Journal      Published on: 06/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abec6c

Parker Data Used; Solar wind; interplanetary turbulence; 1534; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

An approximate analytic solution to the coupled problems of coronal heating and solar-wind acceleration

Between the base of the solar corona at $r=r_\textrm b$ and the Alfvén critical point at $r=r_\textrm A$, where $r$ is heliocentric distance, the solar-wind density decreases by a factor $ \mathop > \limits_∼ 10^5$, but the plasma temperature varies by a factor of only a few. In this paper, I show that such quasi-isothermal evolution out to $r=r_\textrm A$ is a generic property of outflows powered by reflection-driven Alfvén-wave (AW) turbulence, in which outward-propagating AWs partially reflect, and counter-propagating ...

Chandran, Benjamin;

Published by: Journal of Plasma Physics      Published on: 05/2021

YEAR: 2021     DOI: 10.1017/S0022377821000052

astrophysical plasmas; space plasma physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics; Parker Data Used

A New View of the Solar Interface Region from the Interface Region Imaging Spectrograph (IRIS)

The Interface Region Imaging Spectrograph (IRIS) has been obtaining near- and far-ultraviolet images and spectra of the solar atmosphere since July 2013. IRIS is the highest resolution observatory to provide seamless coverage of spectra and images from the photosphere into the low corona. The unique combination of near- and far-ultraviolet spectra and images at sub-arcsecond resolution and high cadence allows the tracing of mass and energy through the critical interface between the surface and the corona or solar wind. IRIS ...

De Pontieu, Bart; Polito, Vanessa; Hansteen, Viggo; Testa, Paola; Reeves, Katharine; Antolin, Patrick; Nóbrega-Siverio, Daniel; Kowalski, Adam; Martinez-Sykora, Juan; Carlsson, Mats; McIntosh, Scott; Liu, Wei; Daw, Adrian; Kankelborg, Charles;

Published by: Solar Physics      Published on: 05/2021

YEAR: 2021     DOI: 10.1007/s11207-021-01826-0

Heating; chromospheric; coronal; chromosphere; models; active; Corona; magnetic fields; chromosphere; Instrumentation and data management; Spectrum; ultraviolet; Astrophysics - Solar and Stellar Astrophysics

On the violation of the zeroth law of turbulence in space plasmas

The zeroth law of turbulence states that, for fixed energy input into large-scale motions, the statistical steady state of a turbulent system is independent of microphysical dissipation properties. This behaviour, which is fundamental to nearly all fluid-like systems from industrial processes to galaxies, occurs because nonlinear processes generate smaller and smaller scales in the flow, until the dissipation - no matter how small - can thermalise the energy input. Using direct numerical simulations and theoretical arguments ...

Meyrand, R.; Squire, J.; Schekochihin, A.; Dorland, W.;

Published by: Journal of Plasma Physics      Published on: 05/2021

YEAR: 2021     DOI: 10.1017/S0022377821000489

space plasma physics; astrophysical plasmas; plasma nonlinear phenomena; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Nonlinear Sciences - Chaotic Dynamics; Physics - Plasma Physics; Parker Data Used

Correlation of the Sunspot Number and the Waiting-time Distribution of Solar Flares, Coronal Mass Ejections, and Solar Wind Switchback Events Observed with the Parker Solar Probe

Waiting-time distributions of solar flares and coronal mass ejections (CMEs) exhibit power-law-like distribution functions with slopes in the range of ατ ≍ 1.4-3.2, as observed in annual data sets during four solar cycles (1974-2012). We find a close correlation between the waiting-time power-law slope ατ and the sunspot number (SN), i.e., ατ = 1.38 + 0.01 × SN. The waiting-time distribution can be fitted with a Pareto-type function of the form N(τ) = N0 $(\tau _0+\tau )^ ...

Aschwanden, Markus; de Wit, Thierry;

Published by: The Astrophysical Journal      Published on: 05/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abef69

Parker Data Used; Solar wind; solar flares; 1534; 1496; Astrophysics - Solar and Stellar Astrophysics

Multiscale Solar Wind Turbulence Properties inside and near Switchbacks Measured by the Parker Solar Probe

The Parker Solar Probe (PSP) routinely observes magnetic field deflections in the solar wind at distances less than 0.3 au from the Sun. These deflections are related to structures commonly called "switchbacks" (SBs), whose origins and characteristic properties are currently debated. Here, we use a database of visually selected SB intervals—and regions of solar wind plasma measured just before and after each SB—to examine plasma parameters, turbulent spectra from inertial to dissipation scales, and intermittency ...

Martinovic, Mihailo; Klein, Kristopher; Huang, Jia; Chandran, Benjamin; Kasper, Justin; Lichko, Emily; Bowen, Trevor; Chen, Christopher; Matteini, Lorenzo; Stevens, Michael; Case, Anthony; Bale, Stuart;

Published by: The Astrophysical Journal      Published on: 05/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abebe5

Parker Data Used; Space plasmas; interplanetary turbulence; Solar wind; 1544; 830; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

How Alfvén waves energize the solar wind: heat versus work

A growing body of evidence suggests that the solar wind is powered to a large extent by an Alfvén-wave (AW) energy flux. AWs energize the solar wind via two mechanisms: heating and work. We use high-resolution direct numerical simulations of reflection-driven AW turbulence (RDAWT) in a fast-solar-wind stream emanating from a coronal hole to investigate both mechanisms. In particular, we compute the fraction of the AW power at the coronal base ($P_\textrm AWb$) that is transferred to solar-wind particles via heating between ...

Perez, Jean; Chandran, Benjamin; Klein, Kristopher; Martinovic, Mihailo;

Published by: Journal of Plasma Physics      Published on: 04/2021

YEAR: 2021     DOI: 10.1017/S0022377821000167

Parker Data Used; astrophysical plasmas; space plasma physics; plasma nonlinear phenomena; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Subproton-scale Intermittency in Near-Sun Solar Wind Turbulence Observed by the Parker Solar Probe

High time-resolution solar wind magnetic field data are employed to study statistics describing intermittency near the first perihelion (∼35.6 R) of the Parker Solar Probe mission. A merged data set employing two instruments on the FIELDS suite enables broadband estimation of higher-order moments of magnetic field increments, with five orders established with reliable accuracy. The duration, cadence, and low noise level of the data permit evaluation of scale dependence of the observed intermittency from the i ...

Chhiber, Rohit; Matthaeus, William; Bowen, Trevor; Bale, Stuart;

Published by: The Astrophysical Journal      Published on: 04/2021

YEAR: 2021     DOI: 10.3847/2041-8213/abf04e

Parker Data Used; Solar wind; interplanetary turbulence; Magnetohydrodynamics; Space plasmas; 1534; 830; 1964; 1544; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Geophysics; Physics - Plasma Physics

Parker Solar Probe Evidence for Scattering of Electrons in the Young Solar Wind by Narrowband Whistler-mode Waves

Observations of plasma waves by the Fields Suite and of electrons by the Solar Wind Electrons Alphas and Protons Investigation on the Parker Solar Probe provide strong evidence for pitch angle scattering of strahl-energy electrons by narrowband whistler-mode waves at radial distances less than ∼0.3 au. We present two example intervals of a few hours each that include eight waveform captures with whistler-mode waves and 26 representative electron distributions that are examined in detail. Two were narrow, seventeen were cle ...

Cattell, C.; Breneman, A.; Dombeck, J.; Short, B.; Wygant, J.; Halekas, J.; Case, Tony; Kasper, J.; Larson, D.; Stevens, Mike; Whittesley, P.; Bale, S.; de Wit, Dudok; Goodrich, K.; MacDowall, R.; Moncuquet, M.; Malaspina, D.; Pulupa, M.;

Published by: The Astrophysical Journal      Published on: 04/2021

YEAR: 2021     DOI: 10.3847/2041-8213/abefdd

Parker Data Used; Solar wind; Space plasmas; Plasma astrophysics; Interplanetary physics; Interplanetary particle acceleration; 1534; 1544; 1261; 827; 826; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Could Switchbacks Originate in the Lower Solar Atmosphere? I. Formation Mechanisms of Switchbacks

The recent rediscovery of magnetic field switchbacks or deflections embedded in the solar wind flow by the Parker Solar Probe mission lead to a huge interest in the modeling of the formation mechanisms and origin of these switchbacks. Several scenarios for their generation were put forth, ranging from lower solar atmospheric origins by reconnection, to being a manifestation of turbulence in the solar wind, and so on. Here we study some potential formation mechanisms of magnetic switchbacks in the lower solar atmosphere, usin ...

Magyar, Norbert; Utz, Dominik; Erdélyi, Robertus; Nakariakov, Valery;

Published by: The Astrophysical Journal      Published on: 04/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abec49

Parker Data Used; Solar atmosphere; Solar Physics; Magnetohydrodynamics; 1477; 1476; 1964; Astrophysics - Solar and Stellar Astrophysics

Evolving solar wind flow properties of magnetic inversions observed by Helios

Macneil, Allan; Owens, Mathew; Wicks, Robert; Lockwood, Mike;

Published by: \mnras      Published on: 03/2021

YEAR: 2021     DOI: 10.1093/mnras/staa3983

Sun: heliosphere; Sun: magnetic fields; Solar wind; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Switchbacks Explained: Super-Parker Fields—The Other Side of the Sub-Parker Spiral

We provide a simple geometric explanation for the source of switchbacks and associated large and one-sided transverse flows in the solar wind observed by the Parker Solar Probe (PSP). The more radial, sub-Parker spiral structure of the heliospheric magnetic field observed previously by Ulysses, ACE, and STEREO is created within rarefaction regions where footpoint motion from the source of fast into slow wind at the Sun creates a magnetic fieldline connection across solar wind speed shear. Conversely, when footpoints move fro ...

Schwadron, N.; McComas, D.;

Published by: The Astrophysical Journal      Published on: 03/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abd4e6

Parker Data Used; Active Solar Corona; Solar wind; Solar Coronal Waves; Solar coronal loops; Solar coronal holes; Solar coronal plumes; Solar magnetic fields; interplanetary magnetic fields; Solar spicules; 1988; 1534; 1995; 1485; 1484; 2039; 1503; 824; 1525; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics; 85

The Encounter of the Parker Solar Probe and a Comet-like Object Near the Sun: Model Predictions and Measurements

The Parker Solar Probe (PSP) aims to explore the nascent solar wind close to the Sun. Meanwhile, PSP is also expected to encounter small objects like comets and asteroids. In this work, we survey the ephemerides to find the chance of a recent encounter and then model the interaction between released dusty plasmas and solar wind plasmas. On 2019 September 2, a comet-like object, the 322P/Solar and Heliosphere Observatory, just passed its perihelion flying to a heliocentric distance of 0.12 au and swept by PSP at a relative di ...

He, Jiansen; Cui, Bo; Yang, Liping; Hou, Chuanpeng; Zhang, Lei; Ip, Wing-Huen; Jia, Ying-Dong; Dong, Chuanfei; Duan, Die; Zong, Qiugang; Bale, Stuart; Pulupa, Marc; Bonnell, John; de Wit, Thierry; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David;

Published by: The Astrophysical Journal      Published on: 03/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abdf4a

Parker Data Used; Solar wind; Comet tails; Interplanetary dust; Asteroids; 1534; 274; 821; 72; Astrophysics - Earth and Planetary Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Source-dependent Properties of Two Slow Solar Wind States

Two states of the slow solar wind are identified from in situ measurements by the Parker Solar Probe (PSP) inside 50 solar radii from the Sun. At such distances the wind measured by PSP has not yet undergone significant transformation related to the expansion and propagation of the wind. We focus in this study on the properties of the quiet solar wind with no magnetic switchbacks. The two states differ by their plasma beta, flux, and magnetic pressure. PSP s magnetic connectivity established with potential field source surfa ...

Griton, Lea; Rouillard, Alexis; Poirier, Nicolas; Issautier, Karine; Moncuquet, Michel; Pinto, Rui;

Published by: The Astrophysical Journal      Published on: 03/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abe309

Parker Data Used; Slow solar wind; Solar wind; Solar coronal holes; Solar coronal streamers; 1873; 1534; 1484; 1486; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Upflows in the Upper Solar Atmosphere

Spectroscopic observations at extreme- and far-ultraviolet wavelengths have revealed systematic upflows in the solar transition region and corona. These upflows are best seen in the network structures of the quiet Sun and coronal holes, boundaries of active regions, and dimming regions associated with coronal mass ejections. They have been intensively studied in the past two decades because they are likely to be closely related to the formation of the solar wind and heating of the upper solar atmosphere. We present an overvi ...

Tian, Hui; Harra, Louise; Baker, Deborah; Brooks, David; Xia, Lidong;

Published by: Solar Physics      Published on: 03/2021

YEAR: 2021     DOI: 10.1007/s11207-021-01792-7

Active regions; velocity field; Coronal holes; coronal mass ejections; low coronal signatures; Heating; coronal; Spectral line; broadening; Astrophysics - Solar and Stellar Astrophysics

Inferred Linear Stability of Parker Solar Probe Observations Using One- and Two-component Proton Distributions

The hot and diffuse nature of the Sun s extended atmosphere allows it to persist in non-equilibrium states for long enough that wave-particle instabilities can arise and modify the evolution of the expanding solar wind. Determining which instabilities arise, and how significant a role they play in governing the dynamics of the solar wind, has been a decades-long process involving in situ observations at a variety of radial distances. With new measurements from the Parker Solar Probe (PSP), we can study what wave modes are dr ...

Klein, K.; Verniero, J.; Alterman, B.; Bale, S.; Case, A.; Kasper, J.; Korreck, K.; Larson, D.; Lichko, E.; Livi, R.; McManus, M.; Martinovic, M.; Rahmati, A.; Stevens, M.; Whittlesey, P.;

Published by: The Astrophysical Journal      Published on: 03/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abd7a0

Parker Data Used; Solar wind; Space plasmas; Plasma physics; 1534; 1544; 2089; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

The Ion Transition Range of Solar Wind Turbulence in the Inner Heliosphere: Parker Solar Probe Observations

The scaling of the turbulent spectra provides a key measurement that allows us to discriminate between different theoretical predictions of turbulence. In the solar wind, this has driven a large number of studies dedicated to this issue using in situ data from various orbiting spacecraft. While a semblance of consensus exists regarding the scaling in the magnetohydrodynamic (MHD) and dispersive ranges, the precise scaling in the transition range and the actual physical mechanisms that control it remain open questions. Using ...

Huang, S; Sahraoui, F.; Andrés, N.; Hadid, L.; Yuan, Z.; He, J.; Zhao, J.; Galtier, S.; Zhang, J.; Deng, X.; Jiang, K.; Yu, L.; Xu, S.; Xiong, Q; Wei, Y; de Wit, Dudok; Bale, S.; Kasper, J.;

Published by: The Astrophysical Journal      Published on: 03/2021

YEAR: 2021     DOI: 10.3847/2041-8213/abdaaf

Parker Data Used; Solar wind; interplanetary turbulence; Solar coronal heating; 1534; 830; 1989; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

A Self-consistent Simulation of Proton Acceleration and Transport Near a High-speed Solar Wind Stream

Wijsen, Nicolas; Samara, Evangelia; Aran, Angels; Lario, David; Pomoell, Jens; Poedts, Stefaan;

Published by: \apjl      Published on: 02/2021

YEAR: 2021     DOI: 10.3847/2041-8213/abe1cb

Solar wind; Corotating streams; Interplanetary particle acceleration; 1534; 314; 826; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Characteristics of Magnetic Holes in the Solar Wind Revealed by Parker Solar Probe

Yu, L.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Xiong, Q.~Y.; Xu, S.~B.; Wei, Y.~Y.; Zhang, J.; Zhang, Z.~H.;

Published by: \apj      Published on: 02/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abb9a8

Solar wind; Solar Physics; interplanetary magnetic fields; Solar magnetic fields; 1534; 1476; 824; 1503; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Harmonic Radio Emission in Randomly Inhomogeneous Plasma

In the present paper, we describe a theoretical model of the generation of harmonic emissions of type III solar radio bursts. The goal of our study is to fully take into account the most efficient physical processes involved in the generation of harmonic electromagnetic emission via nonlinear coupling of Langmuir waves in randomly inhomogeneous plasma of solar wind ( $l+l^\prime \to t$ ). We revisit the conventional mechanism of coalescence of primarily generated and back-scattered Langmuir waves in quasihomogeneous plasma. ...

Tkachenko, Anna; Krasnoselskikh, Vladimir; Voshchepynets, Andrii;

Published by: The Astrophysical Journal      Published on: 02/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abd2bd

Parker Data Used; Solar wind; interplanetary turbulence; Solar Coronal Waves; 1534; 830; 1995; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Random Walk and Trapping of Interplanetary Magnetic Field Lines: Global Simulation, Magnetic Connectivity, and Implications for Solar Energetic Particles

The random walk of magnetic field lines is an important ingredient in understanding how the connectivity of the magnetic field affects the spatial transport and diffusion of charged particles. As solar energetic particles propagate away from near-solar sources, they interact with the fluctuating magnetic field, which modifies their distributions. We develop a formalism in which the differential equation describing the field line random walk contains both effects due to localized magnetic displacements and a non-stochastic co ...

Chhiber, Rohit; Ruffolo, David; Matthaeus, William; Usmanov, Arcadi; Tooprakai, Paisan; Chuychai, Piyanate; Goldstein, Melvyn;

Published by: The Astrophysical Journal      Published on: 02/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abd7f0

Parker Data Used; Solar energetic particles; interplanetary turbulence; interplanetary magnetic fields; Solar wind; 1491; 830; 824; 1534; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Properties of Type III and Type IIIb Bursts in the Frequency Band of 8 - 80 MHz During PSP Perihelion at the Beginning of April 2019

Melnik, V.~N.; Brazhenko, A.~I.; Konovalenko, A.~A.; Frantsuzenko, A.~V.; Yerin, S.~M.; Dorovskyy, V.~V.; Bubnov, I.~M.;

Published by: \solphys      Published on: 01/2021

YEAR: 2021     DOI: 10.1007/s11207-020-01754-5

Type III bursts; Type IIIb bursts; Frequency drift rates; Durations; Brightness temperatures; Astrophysics - Solar and Stellar Astrophysics

Three-dimensional Simulations of the Inhomogeneous Low Solar Wind

Magyar, N.; Nakariakov, V.~M.;

Published by: \apj      Published on: 01/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abd02f

Fast solar wind; interplanetary turbulence; Magnetohydrodynamical simulations; Solar Coronal Waves; 1872; 830; 1966; 1995; Astrophysics - Solar and Stellar Astrophysics

Plumelets: Dynamic Filamentary Structures in Solar Coronal Plumes

Uritsky, V.~M.; DeForest, C.~E.; Karpen, J.~T.; DeVore, C.~R.; Kumar, P.; Raouafi, N.~E.; Wyper, P.~F.;

Published by: \apj      Published on: 01/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abd186

Solar coronal holes; Solar activity; Solar coronal transients; Solar Coronal Waves; Solar magnetic reconnection; Solar wind; Plasma jets; Solar coronal plumes; Solar extreme ultraviolet emission; Direct imaging; Astronomy data analysis; Solar oscillations; 1484; 1475; 312; 1995; 1504; 1534; 1263; 2039; 1493; 387; 1858; 1515; Astrophysics - Solar and Stellar Astrophysics

2020

Bi-directional streaming of particles accelerated at the STEREO-A shock on 2008 March 9

Fraschetti, F.; Giacalone, J.;

Published by: \mnras      Published on: 12/2020

YEAR: 2020     DOI: 10.1093/mnras/staa3021

Parker Data Used; acceleration of particles; shock waves; turbulence; Astrophysics - High Energy Astrophysical Phenomena; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

A Model for Coronal Inflows and In/Out Pairs

Lynch, Benjamin;

Published by: \apj      Published on: 12/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abc5b3

Active Solar Corona; Solar coronal streamers; Solar coronal transients; Solar magnetic fields; Solar magnetic reconnection; Magnetohydrodynamics; 1988; 1486; 312; 1503; 1504; 1964; Astrophysics - Solar and Stellar Astrophysics

Tearing Modes in Partially Ionized Astrophysical Plasma

Pucci, Fulvia; Singh, Alkendra; Tenerani, Anna; Velli, Marco;

Published by: \apjl      Published on: 11/2020

YEAR: 2020     DOI: 10.3847/2041-8213/abc0e7

Parker Data Used; Solar magnetic reconnection; Plasma astrophysics; Space plasmas; Collision processes; 1504; 1261; 1544; 2065; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Oblique Tearing Mode Instability: Guide Field and Hall Effect

Shi, Chen; Velli, Marco; Pucci, Fulvia; Tenerani, Anna; Innocenti, Maria;

Published by: \apj      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb6fa

Parker Data Used; Solar magnetic reconnection; Plasma physics; Magnetohydrodynamics; 1504; 2089; 1964; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

An Optimization Principle for Computing Stationary MHD Equilibria with Solar Wind Flow

Wiegelmann, Thomas; Neukirch, Thomas; Nickeler, Dieter; Chifu, Iulia;

Published by: \solphys      Published on: 10/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01719-8

magnetic fields; Corona; models; Magnetohydrodynamics; Velocity fields; Solar wind; Astrophysics - Solar and Stellar Astrophysics

The Electromagnetic Signature of Outward Propagating Ion-scale Waves

First results from the Parker Solar Probe (PSP) mission have revealed ubiquitous coherent ion-scale waves in the inner heliosphere, which are signatures of kinetic wave-particle interactions and fluid instabilities. However, initial studies of the circularly polarized ion-scale waves observed by PSP have only thoroughly analyzed magnetic field signatures, precluding a determination of solar wind frame propagation direction and intrinsic wave polarization. A comprehensive determination of wave properties requires measureme ...

Bowen, Trevor; Bale, Stuart; Bonnell, J.; Larson, Davin; Mallet, Alfred; McManus, Michael; Mozer, Forrest; Pulupa, Marc; Vasko, Ivan; Verniero, J.;

Published by: The Astrophysical Journal      Published on: 08/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab9f37

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Plasma astrophysics; Plasma physics; Solar Probe Plus; Solar wind; Space plasmas

Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence

We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U., with a power-law index of around -4 . Based on our measurements, we demonstrate that either a significant (\>50 \%) fraction of the total turbulent energy flux is dissipated in this range of scales ...

Bowen, Trevor; Mallet, Alfred; Bale, Stuart; Bonnell, J.; Case, Anthony; Chandran, Benjamin; Chasapis, Alexandros; Chen, Christopher; Duan, Die; de Wit, Thierry; Goetz, Keith; Halekas, Jasper; Harvey, Peter; Kasper, J.; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; McManus, Michael; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis;

Published by: Physical Review Letters      Published on: 07/2020

YEAR: 2020     DOI: 10.1103/PhysRevLett.125.025102

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Critical Balance and the Physics of Magnetohydrodynamic Turbulence

Oughton, S.; Matthaeus, W.~H.;

Published by: \apj      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab8f2a

Parker Data Used; 830; 1544; 1534; 2129; 23; 1964; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics

Coronal-jet-producing Minifilament Eruptions as a Possible Source of Parker Solar Probe Switchbacks

The Parker Solar Probe (PSP) has observed copious rapid magnetic field direction changes in the near-Sun solar wind. These features have been called "switchbacks," and their origin is a mystery. But their widespread nature suggests that they may be generated by a frequently occurring process in the Sun\textquoterights atmosphere. We examine the possibility that the switchbacks originate from coronal jets. Recent work suggests that many coronal jets result when photospheric magnetic flux cancels, and forms a small-scale "m ...

Sterling, Alphonse; Moore, Ronald;

Published by: The Astrophysical Journal      Published on: 06/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab96be

1503; 1504; 1534; 1981; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

First Radio Evidence for Impulsive Heating Contribution to the Quiet Solar Corona

This Letter explores the relevance of nanoflare-based models for heating the quiet Sun corona. Using meterwave data from the Murchison Widefield Array, we present the first successful detection of impulsive emissions down to flux densities of \~mSFU, about two orders of magnitude weaker than earlier attempts. These impulsive emissions have durations ≲1 s and are present throughout the quiet solar corona. The fractional time occupancy of these impulsive emissions at a given region is ≲10\%. The histograms of these impu ...

Mondal, Surajit; Oberoi, Divya; Mohan, Atul;

Published by: The Astrophysical Journal      Published on: 06/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab8817

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Quiet solar corona; Solar corona; Solar coronal heating; Solar coronal radio emission; Solar Probe Plus

Eulerian space-time correlation of strong magnetohydrodynamic turbulence

Perez, Jean; Bourouaine, Sofiane;

Published by: Physical Review Research      Published on: 06/2020

YEAR: 2020     DOI: 10.1103/PhysRevResearch.2.023357

Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Effects of Radial Distances on Small-scale Magnetic Flux Ropes in the Solar Wind

Small-scale magnetic flux ropes (SFRs) in the solar wind have been studied for decades. Statistical analysis utilizing various in situ spacecraft measurements is the main observational approach to investigating the generation and evolution of these small-scale structures. Based on the Grad-Shafranov reconstruction technique, we use the automated detection algorithm to build the databases of these small-scale structures via various spacecraft measurements at different heliocentric distances. We present the SFR properties, ...

Chen, Yu; Hu, Qiang;

Published by: The Astrophysical Journal      Published on: 05/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab8294

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Space Physics; Solar Probe Plus

A Merged Search-Coil and Fluxgate Magnetometer Data Product for Parker Solar Probe FIELDS

NASA\textquoterights Parker Solar Probe (PSP) mission is currently investigating the local plasma environment of the inner heliosphere (\<0.25 R) using both in situ and remote sensing instrumentation. Connecting signatures of microphysical particle heating and acceleration processes to macroscale heliospheric structure requires sensitive measurements of electromagnetic fields over a large range of physical scales. The FIELDS instrument, which provides PSP with in situ measurements of electromagnetic field ...

Bowen, T.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Goodrich, K.; Gruesbeck, J.; Harvey, P.; Jannet, G.; Koval, A.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Revillet, C.; Sheppard, D.; Szabo, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2020

YEAR: 2020     DOI: 10.1029/2020JA027813

Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Instrumentation and Detectors; Physics - Space Physics; Solar Probe Plus



  1      2      3      4