Notice:
|
Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2023 |
Formation, Structure, and Detectability of the Geminids Meteoroid Stream The Geminids meteoroid stream produces one of the most intense meteor showers at Earth. It is an unusual stream in that its parent body is understood to be an asteroid, (3200) Phaethon, unlike most streams, which are formed via ongoing cometary activity. Until recently, our primary understanding of this stream came from Earth-based measurements of the Geminids meteor shower. However, the Parker Solar Probe (PSP) spacecraft has transited near the core of the stream close to its perihelion and provides a new platform to better ... Published by: \psj Published on: jun YEAR: 2023   DOI: 10.3847/PSJ/acd538 Parker Data Used; Meteoroid dust clouds; Interplanetary dust; Zodiacal cloud; 1039; 821; 1845; Astrophysics - Earth and Planetary Astrophysics |
A Dust Detection Database for the Inner Heliosphere Using the Parker Solar Probe Spacecraft A database of in situ dust impact detections made by the Parker Solar Probe spacecraft is created to facilitate studies of interplanetary dust dynamics in the inner heliosphere. A standardized dust detection methodology is established and tested for validity. Individual impact detections are included in the database, and are used to derive dust impact rates. Impact rates are corrected for effects related to high-amplitude plasma waves and undercounting due to finite detection window duration. These corrections suggest that: ... Malaspina, David; Toma, Alexandru; Szalay, Jamey; Pulupa, Marc; y, Petr; Bale, Stuart; Goetz, Keith; Published by: \apjs Published on: jun YEAR: 2023   DOI: 10.3847/1538-4365/acca75 Parker Data Used; Interplanetary dust; Solar wind; space vehicles; Zodiacal cloud; Astronomy databases; 821; 1534; 1549; 1845; 83 |
2022 |
Clouds of Spacecraft Debris Liberated by Hypervelocity Dust Impacts on Parker Solar Probe Hypervelocity impacts on spacecraft surfaces produce a wide range of effects including transient plasma clouds, surface material ablation, and for some impacts, the liberation of spacecraft material as debris clouds. This study examines debris-producing impacts on the Parker Solar Probe spacecraft as it traverses the densest part of the zodiacal cloud: the inner heliosphere. Hypervelocity impacts by interplanetary dust grains on the spacecraft that produce debris clouds are identified and examined. Impact-generated plasma an ... Malaspina, David; Stenborg, Guillermo; Mehoke, Doug; Al-Ghazwi, Adel; Shen, Mitchell; Hsu, Hsiang-Wen; Iyer, Kaushik; Bale, Stuart; de Wit, Thierry; Published by: \apj Published on: jan YEAR: 2022   DOI: 10.3847/1538-4357/ac3bbb |
2021 |
Theory and previous space missions indicate there are several populations of zodiacal dust. The most prominent populations are grains on bound elliptic orbits (\ensuremath\alpha-meteoroids), and \ensuremath\beta-meteoroids on hyperbolic escape trajectories governed largely by their size and composition. Yet, there may be other populations not yet confirmed by observation. The Parker Solar Probe (PSP) spacecraft is able to observe in situ dust populations in the densest part of the zodiacal cloud. Over the first seven orbits, ... Pusack, A.; Malaspina, D.~M.; Szalay, J.~R.; Bale, S.~D.; Goetz, Keith; MacDowall, Robert; Pulupa, Marc; Published by: \psj Published on: oct YEAR: 2021   DOI: 10.3847/PSJ/ac0bb9 Zodiacal cloud; Micrometeoroids; 1845; 1048; Parker Data Used |
1