PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2021

First Observations of Anomalous Cosmic Rays in to 36 Solar Radii

NASA s Parker Solar Probe mission continues to travel closer to the Sun than any prior human-made object, with an expected closest approach of <10 solar radii (<0.046 au) by 2024. On board, the Integrated Science Investigation of the Sun instrument suite makes unprecedented in situ measurements of energetic particles in the near-Sun environment. The current low level of solar activity offers a prime opportunity to measure cosmic rays closer to the Sun than ever before. We present the first observations of anomalous cosmic ra ...

Rankin, J.; McComas, D.; Leske, R.; Christian, E.; Cohen, C.; Cummings, A.; Joyce, C.; Labrador, A.; Mewaldt, R.; Posner, A.; Schwadron, N.; Strauss, R.; Stone, E.; Wiedenbeck, M.;

Published by: The Astrophysical Journal      Published on: 05/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abec7e

cosmic rays; Solar wind; Heliosphere; Solar energetic particles; Solar Physics; solar cycle; Quiet Sun; Particle astrophysics; interplanetary magnetic fields; Plasma astrophysics; Interplanetary particle acceleration; Pickup ions; 329; 1534; 711; 1491; 1476; 1487; 1322; 96; 824; 1261; 826; 1239; Parker Data Used

Random Walk and Trapping of Interplanetary Magnetic Field Lines: Global Simulation, Magnetic Connectivity, and Implications for Solar Energetic Particles

The random walk of magnetic field lines is an important ingredient in understanding how the connectivity of the magnetic field affects the spatial transport and diffusion of charged particles. As solar energetic particles propagate away from near-solar sources, they interact with the fluctuating magnetic field, which modifies their distributions. We develop a formalism in which the differential equation describing the field line random walk contains both effects due to localized magnetic displacements and a non-stochastic co ...

Chhiber, Rohit; Ruffolo, David; Matthaeus, William; Usmanov, Arcadi; Tooprakai, Paisan; Chuychai, Piyanate; Goldstein, Melvyn;

Published by: The Astrophysical Journal      Published on: 02/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abd7f0

Parker Data Used; Solar energetic particles; interplanetary turbulence; interplanetary magnetic fields; Solar wind; 1491; 830; 824; 1534; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

2020

On the Shape of SEP Electron Spectra: The Role of Interplanetary Transport

We address the effect of particle scattering on the energy spectra of solar energetic electron events using (I) an observational and (II) a modeling approach. (I) We statistically study observations of the STEREO spacecraft, using directional electron measurements made with the Solar Electron and Proton Telescope in the range of 45-425 keV. We compare the energy spectra of the anti-Sunward propagating beam with that of the backward-scattered population and find that, on average, the backward-scattered population shows a h ...

Strauss, R.; Dresing, N.; Kollhoff, A.; BrĂ¼dern, M.;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab91b0

1491; 1693; 830; parker solar probe; Solar Probe Plus

CME-associated Energetic Ions at 0.23 au: Consideration of the Auroral Pressure Cooker Mechanism Operating in the Low Corona as a Possible Energization Process

Mitchell, D.~G.; Giacalone, J.; Allen, R.~C.; Hill, M.~E.; McNutt, R.~L.; McComas, D.~J.; Szalay, J.~R.; Schwadron, N.~A.; Rouillard, A.~P.; Bale, S.~B.; Chaston, C.~C.; Pulupa, M.~P.; Whittlesey, P.~L.; Kasper, J.~C.; MacDowall, R.~J.; Christian, E.~R.; Wiedenbeck, M.~E.; Matthaeus, W.~H.;

Published by: \apjs      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab63cc

Parker Data Used; 1491; 310; 1496; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics



  1