PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2022

Anomalous Cosmic-Ray Oxygen Observations into 0.1 au

The Integrated Science Investigation of the Sun instrument suite onboard NASA s Parker Solar Probe mission continues to measure solar energetic particles and cosmic rays closer to the Sun than ever before. Here, we present the first observations of cosmic rays into 0.1 au (21.5 solar radii), focusing specifically on oxygen from \raisebox-0.5ex\textasciitilde2018.7 to \raisebox-0.5ex\textasciitilde2021.2. Our energy spectra reveal an anomalous cosmic-ray-dominated profile that is comparable to that at 1 au, across multiple so ...

Rankin, J.~S.; McComas, D.~J.; Leske, R.~A.; Christian, E.~R.; Cohen, C.~M.~S.; Cummings, A.~C.; Joyce, C.~J.; Labrador, A.~W.; Mewaldt, R.~A.; Schwadron, N.~A.; Stone, E.~C.; Strauss, R.~D.; Wiedenbeck, M.~E.;

Published by: \apj      Published on: jan

YEAR: 2022     DOI: 10.3847/1538-4357/ac348f

Parker Data Used; 567; 329; 1487; 1193; 1503; 1476; 1534; 96; 1544; 711; 1322; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

2021

Global Distribution of the Solar Wind Speed Reconstructed from Improved Tomographic Analysis of Interplanetary Scintillation Observations between 1985 and 2019

Computer-assisted tomography (CAT) for interplanetary scintillation (IPS) observations enables the determination of the global distribution of solar wind speed. We compared solar wind speeds derived from the CAT analysis of IPS observations between 1985 and 2019 with in situ observations conducted by the near-Earth and Ulysses spacecraft. From this comparison, we found that solar wind speeds from the IPS observations for 2009-2019 were systematically higher than the in situ observations, whereas those for the period until 20 ...

Tokumaru, Munetoshi; Fujiki, Ken; Kojima, Masayoshi; Iwai, Kazumasa;

Published by: \apj      Published on: nov

YEAR: 2021     DOI: 10.3847/1538-4357/ac1862

Parker Data Used; 1503; 1534; 828; 1487

First Observations of Anomalous Cosmic Rays in to 36 Solar Radii

NASA s Parker Solar Probe mission continues to travel closer to the Sun than any prior human-made object, with an expected closest approach of <10 solar radii (<0.046 au) by 2024. On board, the Integrated Science Investigation of the Sun instrument suite makes unprecedented in situ measurements of energetic particles in the near-Sun environment. The current low level of solar activity offers a prime opportunity to measure cosmic rays closer to the Sun than ever before. We present the first observations of anomalous cosmic ra ...

Rankin, J.; McComas, D.; Leske, R.; Christian, E.; Cohen, C.; Cummings, A.; Joyce, C.; Labrador, A.; Mewaldt, R.; Posner, A.; Schwadron, N.; Strauss, R.; Stone, E.; Wiedenbeck, M.;

Published by: The Astrophysical Journal      Published on: 05/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abec7e

cosmic rays; Solar wind; Heliosphere; Solar energetic particles; Solar Physics; solar cycle; Quiet Sun; Particle astrophysics; interplanetary magnetic fields; Plasma astrophysics; Interplanetary particle acceleration; Pickup ions; 329; 1534; 711; 1491; 1476; 1487; 1322; 96; 824; 1261; 826; 1239; Parker Data Used



  1