PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2023

Coronal Loop Heating by Nearly Incompressible Magnetohydrodynamic and Reduced Magnetohydrodynamic Turbulence Models

The transport of waves and turbulence beyond the photosphere is central to the coronal heating problem. Turbulence in the quiet solar corona has been modeled on the basis of the nearly incompressible magnetohydrodynamic (NI MHD) theory to describe the transport of low-frequency turbulence in open magnetic field regions. It describes the evolution of the coupled majority quasi-2D and minority slab component, driven by the magnetic carpet and advected by a subsonic, sub-Alfv\ enic flow from the lower corona. In this paper, we ...

Yalim, M.~S.; Zank, G.~P.; Asgari-Targhi, M.;

Published by: \apj      Published on: feb

YEAR: 2023     DOI: 10.3847/1538-4357/acb151

Parker Data Used; Magnetohydrodynamics; Solar coronal loops; interplanetary turbulence; 1964; 1485; 830

2021

Signatures of Type III Solar Radio Bursts from Nanoflares: Modeling

There is a wide consensus that the ubiquitous presence of magnetic reconnection events and the associated impulsive heating (nanoflares) are strong candidates for solving the solar coronal heating problem. Whether nanoflares accelerate particles to high energies like full-sized flares is unknown. We investigate this question by studying the type III radio bursts that the nanoflares may produce on closed loops. The characteristic frequency drifts that type III bursts exhibit can be detected using a novel application of the ti ...

Chhabra, Sherry; Klimchuk, James; Gary, Dale;

Published by: \apj      Published on: dec

YEAR: 2021     DOI: 10.3847/1538-4357/ac2364

Parker Data Used; 1522; 1491; 1504; 1339; 1993; 1485; Astrophysics - Solar and Stellar Astrophysics

Switchbacks Explained: Super-Parker Fields—The Other Side of the Sub-Parker Spiral

We provide a simple geometric explanation for the source of switchbacks and associated large and one-sided transverse flows in the solar wind observed by the Parker Solar Probe (PSP). The more radial, sub-Parker spiral structure of the heliospheric magnetic field observed previously by Ulysses, ACE, and STEREO is created within rarefaction regions where footpoint motion from the source of fast into slow wind at the Sun creates a magnetic fieldline connection across solar wind speed shear. Conversely, when footpoints move fro ...

Schwadron, N.; McComas, D.;

Published by: The Astrophysical Journal      Published on: 03/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abd4e6

Parker Data Used; Active Solar Corona; Solar wind; Solar Coronal Waves; Solar coronal loops; Solar coronal holes; Solar coronal plumes; Solar magnetic fields; interplanetary magnetic fields; Solar spicules; 1988; 1534; 1995; 1485; 1484; 2039; 1503; 824; 1525; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics; 85



  1