Notice:
|
Found 59 entries in the Bibliography.
Showing entries from 1 through 50
2022 |
Langmuir-Slow Extraordinary Mode Magnetic Signature Observations with Parker Solar Probe Radio emission from interplanetary shocks, planetary foreshocks, and some solar flares occurs in the so-called plasma emission framework. The generally accepted scenario begins with electrostatic Langmuir waves that are driven by a suprathermal electron beam on the Landau resonance. These Langmuir waves then mode-convert to freely propagating electromagnetic emissions at the local plasma frequency f $_ pe $ and/or its harmonic 2f $_ pe $. However, the details of the physics of mode conversion are unclear, and so far the ... Larosa, A.; de Wit, Dudok; Krasnoselskikh, V.; Bale, S.~D.; Agapitov, O.; Bonnell, J.; Froment, C.; Goetz, K.; Harvey, P.; Halekas, J.; Kretzschmar, M.; MacDowall, R.; Malaspina, David; Moncuquet, M.; Niehof, J.; Pulupa, M.; Revillet, C.; Published by: \apj Published on: mar YEAR: 2022   DOI: 10.3847/1538-4357/ac4e85 Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544 |
Inertial-range Magnetic-fluctuation Anisotropy Observed from Parker Solar Probe s First Seven Orbits Solar wind turbulence is anisotropic with respect to the mean magnetic field. Anisotropy leads to ambiguity when interpreting in situ turbulence observations in the solar wind because an apparent change in the measurements could be due to either the change of intrinsic turbulence properties or to a simple change of the spacecraft sampling direction. We demonstrate the ambiguity using the spectral index and magnetic compressibility in the inertial range observed by the Parker Solar Probe during its first seven orbits ranging ... Zhao, L.; Zank, G.~P.; Adhikari, L.; Nakanotani, M.; Published by: \apjl Published on: jan YEAR: 2022   DOI: 10.3847/2041-8213/ac4415 Parker Data Used; 1534; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
A Study of an Equatorial Coronal Hole Observed at the First Parker Solar Probe Perihelion In this study, we present an observational analysis of a coronal hole (CH) observed on 2018 November 1 and solar wind (SW) that originated from it, using the Solar Dynamics Observatory, the Parker Solar Probe (PSP) observations at 68 solar radii, ACE and WIND data at 1 au, and interplanetary scintillation (IPS) observations from 0.2 to 1 au. The CH-originated SW stream was observed by L1 on 2018 November 4 and by PSP on 2018 November 15. We examined the CH for nine Carrington Rotations (CR) and find that the SW stream to rea ... Karna, Nishu; Berger, Mitchell; Asgari-Targhi, Mahboubeh; Paulson, Kristoff; Fujiki, Ken; Published by: \apj Published on: jan YEAR: 2022   DOI: 10.3847/1538-4357/ac3c46 |
Improving the Alfv\ en Wave Solar Atmosphere Model Based on Parker Solar Probe Data In van der Holst et al. (2019), we modeled the solar corona and inner heliosphere of the first encounter of NASA s Parker Solar Probe (PSP) using the Alfv\ en Wave Solar atmosphere Model (AWSoM) with Air Force Data Assimilative Photospheric flux Transport- Global Oscillation Network Group magnetograms, and made predictions of the state of the solar wind plasma for the first encounter. AWSoM uses low-frequency Alfv\ en wave turbulence to address the coronal heating and acceleration. Here, we revise our simulations, by introdu ... van der Holst, B.; Huang, J.; Sachdeva, N.; Kasper, J.~C.; Manchester, W.~B.; Borovikov, D.; Chandran, B.~D.~G.; Case, A.~W.; Korreck, K.~E.; Larson, D.; Livi, R.; Stevens, M.; Whittlesey, P.; Bale, S.~D.; Pulupa, M.; Malaspina, D.~M.; Bonnell, J.~W.; Harvey, P.~R.; Goetz, K.; MacDowall, R.~J.; Published by: \apj Published on: feb YEAR: 2022   DOI: 10.3847/1538-4357/ac3d34 |
Turbulence in the Sub-Alfv\ enic Solar Wind The Parker Solar Probe (PSP) entered a region of sub-Alfv\ enic solar wind during encounter 8, and we present the first detailed analysis of low-frequency turbulence properties in this novel region. The magnetic field and flow velocity vectors were highly aligned during this interval. By constructing spectrograms of the normalized magnetic helicity, cross-helicity, and residual energy, we find that PSP observed primarily Alfv\ enic fluctuations, a consequence of the highly field-aligned flow that renders quasi-2D fluctuation ... Zank, G.~P.; Zhao, L.; Adhikari, L.; Telloni, D.; Kasper, J.~C.; Stevens, M.; Rahmati, A.; Bale, S.~D.; Published by: \apjl Published on: feb YEAR: 2022   DOI: 10.3847/2041-8213/ac51da |
2021 |
Icarus: In-situ monitoring of the surface degradation on a near-Sun asteroid Icarus is a mission concept designed to record the activity of an asteroid during a close encounter with the Sun. The primary science goal of the mission is to unravel the nontrivial mechanism(s) that destroy asteroids on orbits with small perihelion distances. Understanding the destruction mechanism(s) allows us to constrain the bulk composition and interior structure of asteroids in general. The Icarus mission does not only aim to achieve its science goals but also functions as a technical demonstration of what a low-cost ... Lehtinen, Tuomas; Granvik, Mikael; Bellome, Andrea; anchez, Joan-Pau; Published by: Acta Astronautica Published on: sep YEAR: 2021   DOI: 10.1016/j.actaastro.2021.05.028 |
Computer-assisted tomography (CAT) for interplanetary scintillation (IPS) observations enables the determination of the global distribution of solar wind speed. We compared solar wind speeds derived from the CAT analysis of IPS observations between 1985 and 2019 with in situ observations conducted by the near-Earth and Ulysses spacecraft. From this comparison, we found that solar wind speeds from the IPS observations for 2009-2019 were systematically higher than the in situ observations, whereas those for the period until 20 ... Tokumaru, Munetoshi; Fujiki, Ken; Kojima, Masayoshi; Iwai, Kazumasa; Published by: \apj Published on: nov YEAR: 2021   DOI: 10.3847/1538-4357/ac1862 Parker Data Used; 1503; 1534; 828; 1487 |
MHD and Ion Kinetic Waves in Field-aligned Flows Observed by Parker Solar Probe Parker Solar Probe (PSP) observed predominately Alfv\ enic fluctuations in the solar wind near the Sun where the magnetic field tends to be radially aligned. In this paper, two magnetic- field-aligned solar wind flow intervals during PSP s first two orbits are analyzed. Observations of these intervals indicate strong signatures of parallel/antiparallel-propagating waves. We utilize multiple analysis techniques to extract the properties of the observed waves in both magnetohydrodynamic (MHD) and kinetic scales. At the MHD sca ... Zhao, L.; Zank, G.~P.; He, J.~S.; Telloni, D.; Adhikari, L.; Nakanotani, M.; Kasper, J.~C.; Bale, S.~D.; Published by: \apj Published on: dec YEAR: 2021   DOI: 10.3847/1538-4357/ac28fb Parker Data Used; 1534; 23; 830; 824 |
\ Aims: Solar Orbiter (SolO) was launched on February 9, 2020, allowing us to study the nature of turbulence in the inner heliopshere. We investigate the evolution of anisotropic turbulence in the fast and slow solar wind in the inner heliosphere using the nearly incompressible magnetohydrodynamic (NI MHD) turbulence model and SolO measurements. \ Methods: We calculated the two dimensional (2D) and the slab variances of the energy in forward and backward propagating modes, the fluctuating magnetic energy, the fluctuating kin ... Adhikari, L.; Zank, G.~P.; Zhao, L.; Telloni, D.; Horbury, T.~S.; Brien, H.; Evans, V.; Angelini, V.; Owen, C.~J.; Louarn, P.; Fedorov, A.; Published by: \aap Published on: dec YEAR: 2021   DOI: 10.1051/0004-6361/202140672 |
Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. \ Aims: This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7\ensuremath-8, 2020, from both an observational and a modeli ... Telloni, D.; Scolini, C.; Möstl, C.; Zank, G.~P.; Zhao, L.; Weiss, A.~J.; Reiss, M.~A.; Laker, R.; Perrone, D.; Khotyaintsev, Y.; Steinvall, K.; Sorriso-Valvo, L.; Horbury, T.~S.; Wimmer-Schweingruber, R.~F.; Bruno, R.; Amicis, R.; De Marco, R.; Jagarlamudi, V.~K.; Carbone, F.; Marino, R.; Stangalini, M.; Nakanotani, M.; Adhikari, L.; Liang, H.; Woodham, L.~D.; Davies, E.~E.; Hietala, H.; Perri, S.; omez-Herrero, R.; iguez-Pacheco, Rodr\; Antonucci, E.; Romoli, M.; Fineschi, S.; Maksimovic, M.; Sou\vcek, J.; Chust, T.; Kretzschmar, M.; Vecchio, A.; Müller, D.; Zouganelis, I.; Winslow, R.~M.; Giordano, S.; Mancuso, S.; Susino, R.; Ivanovski, S.~L.; Messerotti, M.; Brien, H.; Evans, V.; Angelini, V.; Published by: \aap Published on: dec YEAR: 2021   DOI: 10.1051/0004-6361/202140648 Parker Data Used; magnetohydrodynamics (MHD); Sun: coronal mass ejections (CMEs); Sun: evolution; Sun: heliosphere; Solar wind; solar-terrestrial relations |
The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29 Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (\ensuremath\lesssim1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near- Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and a ... Kollhoff, A.; Kouloumvakos, A.; Lario, D.; Dresing, N.; omez-Herrero, R.; ia, Rodr\; Malandraki, O.~E.; Richardson, I.~G.; Posner, A.; Klein, K.; Pacheco, D.; Klassen, A.; Heber, B.; Cohen, C.~M.~S.; Laitinen, T.; Cernuda, I.; Dalla, S.; Lara, Espinosa; Vainio, R.; Köberle, M.; Kühl, R.; Xu, Z.~G.; Berger, L.; Eldrum, S.; Brüdern, M.; Laurenza, M.; Kilpua, E.~J.; Aran, A.; Rouillard, A.~P.; ik, Bu\vc\; Wijsen, N.; Pomoell, J.; Wimmer-Schweingruber, R.~F.; Martin, C.; Böttcher, S.~I.; von Forstner, J.~L.; Terasa, J.; Boden, S.; Kulkarni, S.~R.; Ravanbakhsh, A.; Yedla, M.; Janitzek, N.; iguez-Pacheco, Rodr\; Mateo, Prieto; Prieto, S.; Espada, Parra; Polo, Rodr\; in, Mart\; Carcaboso, F.; Mason, G.~M.; Ho, G.~C.; Allen, R.~C.; Andrews, Bruce; Schlemm, C.~E.; Seifert, H.; Tyagi, K.; Lees, W.~J.; Hayes, J.; Bale, S.~D.; Krupar, V.; Horbury, T.~S.; Angelini, V.; Evans, V.; Brien, H.; Maksimovic, M.; Khotyaintsev, Yu.; Vecchio, A.; Steinvall, K.; Asvestari, E.; Published by: \aap Published on: dec YEAR: 2021   DOI: 10.1051/0004-6361/202140937 Parker Data Used; Sun: particle emission; Sun: heliosphere; Sun: coronal mass ejections (CMEs); Sun: flares; Interplanetary medium |
Context. Solar Orbiter was launched on 10 February 2020 with the purpose of investigating solar and heliospheric physics using a payload of instruments designed for both remote and in situ studies. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar Orbiter carries instruments designed to measure low-frequency DC electric fields. \ Aims: In this paper, we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In p ... Steinvall, K.; Khotyaintsev, Yu.; Cozzani, G.; Vaivads, A.; Yordanova, E.; Eriksson, A.~I.; Edberg, N.~J.~T.; Maksimovic, M.; Bale, S.~D.; Chust, T.; Krasnoselskikh, V.; Kretzschmar, M.; Lorfèvre, E.; Plettemeier, D.; Sou\vcek, J.; Steller, M.; ak, \vS.; Vecchio, A.; Horbury, T.~S.; Brien, H.; Evans, V.; Fedorov, A.; Louarn, P.; enot, V.; e, Andr\; Lavraud, B.; Rouillard, A.~P.; Owen, C.~J.; Published by: \aap Published on: dec YEAR: 2021   DOI: 10.1051/0004-6361/202140855 Parker Data Used; Solar wind; plasmas; magnetic reconnection; methods: data analysis; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
Context. Solar Orbiter was launched on 10 February 2020 with the purpose of investigating solar and heliospheric physics using a payload of instruments designed for both remote and in situ studies. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar Orbiter carries instruments designed to measure low-frequency DC electric fields. \ Aims: In this paper, we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In p ... Steinvall, K.; Khotyaintsev, Yu.; Cozzani, G.; Vaivads, A.; Yordanova, E.; Eriksson, A.~I.; Edberg, N.~J.~T.; Maksimovic, M.; Bale, S.~D.; Chust, T.; Krasnoselskikh, V.; Kretzschmar, M.; Lorfèvre, E.; Plettemeier, D.; Sou\vcek, J.; Steller, M.; ak, \vS.; Vecchio, A.; Horbury, T.~S.; Brien, H.; Evans, V.; Fedorov, A.; Louarn, P.; enot, V.; e, Andr\; Lavraud, B.; Rouillard, A.~P.; Owen, C.~J.; Published by: \aap Published on: dec YEAR: 2021   DOI: 10.1051/0004-6361/202140855 Parker Data Used; Solar wind; plasmas; magnetic reconnection; methods: data analysis; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
Turbulence transport in the solar corona: Theory, modeling, and Parker Solar Probe A primary goal of the Parker Solar Probe (PSP) Mission is to answer the outstanding question of how the solar corona plasma is heated to the high temperatures needed for the acceleration of the solar wind. Various heating mechanisms have been suggested, but one that is gaining increasing credence is associated with the dissipation of low frequency magnetohyrodynamic (MHD) turbulence. However, the MHD turbulence models come in several flavors: one in which outwardly propagating Alfv\ en waves experience reflection from the la ... Zank, G.~P.; Zhao, L.; Adhikari, L.; Telloni, D.; Kasper, J.~C.; Bale, S.~D.; Published by: Physics of Plasmas Published on: aug YEAR: 2021   DOI: 10.1063/5.0055692 |
Flux Ropes, Turbulence, and Collisionless Perpendicular Shock Waves: High Plasma Beta Case With the onset of solar maximum and the expected increased prevalence of interplanetary shock waves, Parker Solar Probe is likely to observe numerous shocks in the next few years. An outstanding question that has received surprisingly little attention has been how turbulence interacts with collisionless shock waves. Turbulence in the supersonic solar wind is described frequently as a superposition of a majority 2D and a minority slab component. We formulate a collisional perpendicular shock-turbulence transmission problem in ... Zank, G.; Nakanotani, M.; Zhao, L.; Du, S.; Adhikari, L.; Che, H.; le Roux, J.; Published by: The Astrophysical Journal Published on: 06/2021 YEAR: 2021   DOI: 10.3847/1538-4357/abf7c8 Interplanetary shocks; interplanetary turbulence; 829; 830; Parker Data Used |
Detection of small magnetic flux ropes from the third and fourth Parker Solar Probe encounters Context. Zhao, L.; Zank, G.; Hu, Q.; Telloni, D.; Chen, Y.; Adhikari, L.; Nakanotani, M.; Kasper, J.; Huang, J.; Bale, S.; Korreck, K.; Case, A.; Stevens, M.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Larson, D.; Livi, R.; Whittlesey, P.; Klein, K.; Raouafi, N.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039298 Solar wind; Sun: magnetic fields; turbulence; methods: observational; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used |
Jagarlamudi, V.; de Wit, Dudok; Froment, C.; Krasnoselskikh, V.; Larosa, A.; Bercic, L.; Agapitov, O.; Halekas, J.; Kretzschmar, M.; Malaspina, D.; Moncuquet, M.; Bale, S.; Case, A.; Kasper, J.; Korreck, K.; Larson, D.; Pulupa, M.; Stevens, M.; Whittlesey, P.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039808 waves; scattering; plasmas; Sun: heliosphere; magnetic fields; Physics - Space Physics; Parker Data Used |
Context. The first encounters of Parker Solar Probe (PSP) with the Sun revealed the presence of ubiquitous localised magnetic deflections in the inner heliosphere; these structures, often called switchbacks, are particularly striking in solar wind streams originating from coronal holes. Froment, C.; Krasnoselskikh, V.; de Wit, Dudok; Agapitov, O.; Fargette, N.; Lavraud, B.; Larosa, A.; Kretzschmar, M.; Jagarlamudi, V.; Velli, M.; Malaspina, D.; Whittlesey, P.; Bale, S.; Case, A.; Goetz, K.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Mozer, F.; Pulupa, M.; Revillet, C.; Stevens, M.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039806 Sun: heliosphere; Solar wind; magnetic fields; magnetic reconnection; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used |
Switchbacks: statistical properties and deviations from Alfvénicity Context. Parker Solar Probe s first solar encounter has revealed the presence of sudden magnetic field deflections in the slow Alfvénic solar wind. These structures, which are often called switchbacks, are associated with proton velocity enhancements. Larosa, A.; Krasnoselskikh, V.; de Wit, Dudok; Agapitov, O.; Froment, C.; Jagarlamudi, V.; Velli, M.; Bale, S.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Revillet, C.; Stevens, M.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039442 Solar wind; magnetic fields; waves; magnetohydrodynamics (MHD); Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used |
The first radial alignment between Parker Solar Probe and Solar Orbiter spacecraft is used to investigate the evolution of solar wind turbulence in the inner heliosphere. Assuming ballistic propagation, two 1.5 hr intervals are tentatively identified as providing measurements of the same plasma parcels traveling from 0.1 to 1 au. Using magnetic field measurements from both spacecraft, the properties of turbulence in the two intervals are assessed. Magnetic spectral density, flatness, and high-order moment scaling laws are ca ... Telloni, Daniele; Sorriso-Valvo, Luca; Woodham, Lloyd; Panasenco, Olga; Velli, Marco; Carbone, Francesco; Zank, Gary; Bruno, Roberto; Perrone, Denise; Nakanotani, Masaru; Shi, Chen; Amicis, Raffaella; De Marco, Rossana; Jagarlamudi, Vamsee; Steinvall, Konrad; Marino, Raffaele; Adhikari, Laxman; Zhao, Lingling; Liang, Haoming; Tenerani, Anna; Laker, Ronan; Horbury, Timothy; Bale, Stuart; Pulupa, Marc; Malaspina, David; MacDowall, Robert; Goetz, Keith; de Wit, Thierry; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Larson, Davin; Case, Anthony; Stevens, Michael; Whittlesey, Phyllis; Livi, Roberto; Owen, Christopher; Livi, Stefano; Louarn, Philippe; Antonucci, Ester; Romoli, Marco; Brien, Helen; Evans, Vincent; Angelini, Virginia; Published by: The Astrophysical Journal Published on: 05/2021 YEAR: 2021   DOI: 10.3847/2041-8213/abf7d1 Parker Data Used; Magnetohydrodynamics; Alfven waves; Space plasmas; interplanetary turbulence; Solar wind; 1964; 23; 1544; 830; 1534 |
Harmonic Radio Emission in Randomly Inhomogeneous Plasma In the present paper, we describe a theoretical model of the generation of harmonic emissions of type III solar radio bursts. The goal of our study is to fully take into account the most efficient physical processes involved in the generation of harmonic electromagnetic emission via nonlinear coupling of Langmuir waves in randomly inhomogeneous plasma of solar wind ( $l+l^\prime \to t$ ). We revisit the conventional mechanism of coalescence of primarily generated and back-scattered Langmuir waves in quasihomogeneous plasma. ... Tkachenko, Anna; Krasnoselskikh, Vladimir; Voshchepynets, Andrii; Published by: The Astrophysical Journal Published on: 02/2021 YEAR: 2021   DOI: 10.3847/1538-4357/abd2bd Parker Data Used; Solar wind; interplanetary turbulence; Solar Coronal Waves; 1534; 830; 1995; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Measurement of Magnetic Field Fluctuations in the Parker Solar Probe and Solar Orbiter Missions The search coil magnetometer (SCM) measures the magnetic signature of solar wind fluctuations with three components in the 3 Hz-50 kHz range and one single component in the 1 kHz-1 MHz range. This instrument is important for providing in situ observations of transients caused by interplanetary shocks and reconnection, for the identification of electromagnetic wave modes in plasmas and the determination of their characteristics (planarity, polarization, ellipticity, and k vector) and for studying the turbulent cascade in the ... Jannet, G.; de Wit, Dudok; Krasnoselskikh, V.; Kretzschmar, M.; Fergeau, P.; Bergerard-Timofeeva, M.; Agrapart, C.; Brochot, J; Chalumeau, G.; Martin, P.; Revillet, C.; Bale, S.; Maksimovic, M.; Bowen, T.; Brysbaert, C.; Goetz, K.; Guilhem, E.; Harvey, P.; Leray, V.; Lorfèvre, E.; Published by: Journal of Geophysical Research (Space Physics) Published on: 02/2021 YEAR: 2021   DOI: 10.1029/2020JA028543 Parker Data Used; magnetometer; parker solar probe; search coil; Solar Orbiter |
Melnik, V.~N.; Brazhenko, A.~I.; Konovalenko, A.~A.; Frantsuzenko, A.~V.; Yerin, S.~M.; Dorovskyy, V.~V.; Bubnov, I.~M.; Published by: \solphys Published on: 01/2021 YEAR: 2021   DOI: 10.1007/s11207-020-01754-5 Type III bursts; Type IIIb bursts; Frequency drift rates; Durations; Brightness temperatures; Astrophysics - Solar and Stellar Astrophysics |
2020 |
Modeling proton and electron heating in the fast solar wind Context. The Parker Solar Probe (PSP) measures solar wind protons and electrons near the Sun. To study the thermodynamic properties of electrons and protons, we include electron effects, such as distributed turbulent heating between protons and electrons, Coulomb collisions between protons and electrons, and heat conduction of electrons. \ Aims: We develop a general theoretical model of nearly incompressible magnetohydrodynamic (NI MHD) turbulence coupled with a solar wind model that includes electron pressure and heat flux. ... Adhikari, L.; Zank, G.P.; Zhao, L.-L.; Nakanotani, M.; Tasnim, S.; Published by: Astronomy and Astrophysics Published on: jun YEAR: 2020   DOI: "10.1051/0004-6361/202039297" |
Radio Signature of a Distant behind-the-limb CME on 2017 September 6 We discuss properties of a Type IV burst, which was observed on 2017 September 6, as a result of the powerful flare X 9.3. At decameter wavelengths this burst was observed by the radio telescopes STEREO A, URAN-2, and the Nancay Decameter Array at frequencies 5-35 MHz. This moving Type IV burst was associated with a coronal mass ejection (CME) propagating in the southwest direction with a speed of 1570 km s(-1). The maximum radio flux of this burst was about 300 s.f.u. and the polarization was more than 40\%. In the frequenc ... Melnik, V.; Rucker, H.; Brazhenko, I.; Panchenko, M.; Konovalenko, A.; , Frantsuzenko; Dorovskyy, V.; , Shevchuk; Published by: ASTROPHYSICAL JOURNAL Published on: 12/2020 YEAR: 2020   DOI: 10.3847/1538-4357/abbfb3 |
Magnetohydrodynamic Turbulent Evolution of a Magnetic Cloud in the Outer Heliosphere Telloni, Daniele; Zhao, Lingling; Zank, Gary; Liang, Haoming; Nakanotani, Masaru; Adhikari, Laxman; Carbone, Francesco; Amicis, Raffaella; Perrone, Denise; Bruno, Roberto; Dasso, Sergio; Published by: \apjl Published on: 12/2020 YEAR: 2020   DOI: 10.3847/2041-8213/abcb03 Parker Data Used; Magnetohydrodynamics; interplanetary turbulence; Solar coronal mass ejections; interplanetary magnetic fields; Heliosphere; Solar wind; Solar magnetic reconnection; 1964; 830; 310; 824; 711; 1534; 1504 |
We propose a turbulence-driven\ solar\ wind model for a fast\ solar\ wind flow in an open coronal hole where the\ solar\ wind flow and the magnetic field are highly aligned. We compare the numerical results of our model with\ Parker\ Solar\ Probe\ measurements of the fast\ solar\ wind flow and find good agreement between them. We find that (1) the majority quasi-2D turbulence is mainly responsible for coronal heating, raising the temperature to about similar to 1 ... Adhikari, L.; Zank, G.; Zhao, L.-L.; Published by: The Astrophysical Journal Published on: 10/2020 YEAR: 2020   DOI: 10.3847/1538-4357/abb132 |
The Origin of Switchbacks in the Solar Corona: Linear Theory The origin, structure, and propagation characteristics of a switchback are compelling questions posed by Parker Solar Probe (PSP) observations of velocity spikes and magnetic field reversals. By assuming interchange reconnection between coronal loop and open magnetic field, we show that this results in the generation of upward (into the heliosphere) and downward complex structures propagating at the fast magnetosonic speed (i.e., the Alfvén speed in the low plasma beta corona) that can have an arbitrary radial magnetic fiel ... Zank, G.; Nakanotani, M.; Zhao, L.-L.; Adhikari, L.; Kasper, J.; Published by: The Astrophysical Journal Published on: 10/2020 YEAR: 2020   DOI: 10.3847/1538-4357/abb828 Parker Data Used; Active Solar Corona; Solar Coronal Waves; interplanetary turbulence |
Zank, G.~P.; Nakanotani, M.; Zhao, L.; Adhikari, L.; Telloni, D.; Published by: \apj Published on: 09/2020 YEAR: 2020   DOI: 10.3847/1538-4357/abad30 |
Spectral Features in Field-aligned Solar Wind Turbulence from Parker Solar Probe Observations Parker Solar Probe (PSP) observed a large variety of Alfv\ enic fluctuations in the fast and slow solar wind flow during its two perihelia. The properties of Alfv\ enic solar wind turbulence have been studied for decades in the near-Earth environment. A spectral index of -5/3 or -2 for magnetic field fluctuations has been observed using spacecraft measurements, which can be explained by turbulence theories of nearly incompressible magnetohydrodynamics (NI MHD) or critical balance. In this study, a rigorous search of field ... Zhao, L.-L.; Zank, G.; Adhikari, L.; Nakanotani, M.; Telloni, D.; Carbone, F.; Published by: The Astrophysical Journal Published on: 08/2020 YEAR: 2020   DOI: 10.3847/1538-4357/ab9b7e interplanetary turbulence; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Spectral index |
Raghav, Anil; Gaikwad, Sandesh; Wang, Yuming; Shaikh, Zubair; Mishra, Wageesh; Zao, Ake; Published by: \mnras Published on: 06/2020 YEAR: 2020   DOI: 10.1093/mnras/staa1189 Sun: coronal mass ejections; solar-terrestrial relations; Solar wind |
Raghav, Anil; Gaikwad, Sandesh; Wang, Yuming; Shaikh, Zubair; Mishra, Wageesh; Zao, Ake; Published by: \mnras Published on: 06/2020 YEAR: 2020   DOI: 10.1093/mnras/staa1189 Sun: coronal mass ejections; solar-terrestrial relations; Solar wind |
One of the discoveries of the Parker Solar Probe during its first encounters with the Sun is ubiquitous presence of relatively small-scale structures standing out as sudden deflections of the magnetic field. They were named "switchbacks" since some of them show a full reversal of the radial component of the magnetic field and then return to "regular" conditions. We carried out an analysis of three typical switchback structures having different characteristics: I. Alfv\ enic structure, where the variations of the magnetic ... Krasnoselskikh, V.; Larosa, A.; Agapitov, O.; de Wit, Dudok; Moncuquet, M.; Mozer, F.; Stevens, M.; Bale, S.; Bonnell, J.; Froment, C.; Goetz, K.; Goodrich, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Raouafi, N.; Revillet, C.; Velli, M.; Wygant, J.; Published by: The Astrophysical Journal Published on: 04/2020 YEAR: 2020   DOI: 10.3847/1538-4357/ab7f2d Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
Observations by the Parker Solar Probe mission of the solar wind at \~35.7 solar radii reveal the existence of whistler wave packets with frequencies below 0.1 fce (20-80 Hz in the spacecraft frame). These waves often coincide with local minima of the magnetic field magnitude or with sudden deflections of the magnetic field that are called switchbacks. Their sunward propagation leads to a significant Doppler frequency downshift from 200-300 to 20-80 Hz (from 0.2 to 0.5 fce). The polarization of these ... Agapitov, O.; de Wit, Dudok; Mozer, F.; Bonnell, J.; Drake, J.; Malaspina, D.; Krasnoselskikh, V.; Bale, S.; Whittlesey, P.; Case, A.; Chaston, C.; Froment, C.; Goetz, K.; Goodrich, K.; Harvey, P.; Kasper, J.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Pulupa, M.; Revillet, C.; Stevens, M.; Wygant, J.; Published by: The Astrophysical Journal Published on: 03/2020 YEAR: 2020   DOI: 10.3847/2041-8213/ab799c Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere The first two orbits of the Parker Solar Probe spacecraft have enabled the first in situ measurements of the solar wind down to a heliocentric distance of 0.17 au (or 36 R\ ⊙\ \ R⊙ ). Here, we present an analysis of this data to study solar wind turbulence at 0.17 au and its evolution out to 1 au. While many features remain similar, key differences at 0.17 au include increased turbulence energy levels by more than an order of magnitude, a magnetic field spectral index of -3/2 matching that of t ... Chen, C.; Bale, S.; Bonnell, J.; Borovikov, D.; Bowen, T.; Burgess, D.; Case, A.; Chandran, B.; de Wit, Dudok; Goetz, K.; Harvey, P.; Kasper, J.; Klein, K.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; Mallet, A.; McManus, M.; Moncuquet, M.; Pulupa, M.; Stevens, M.; Whittlesey, P.; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab60a3 Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus |
The Parker Solar Probe (PSP) observed an interplanetary coronal mass ejection (ICME) event during its first orbit around the Sun, among many other events. This event is analyzed by applying a wavelet analysis technique to obtain the reduced magnetic helicity, cross helicity, and residual energy, the first two of which are magnetohydrodynamics (MHD) invariants. Our results show that the ICME, as a large-scale magnetic flux rope, possesses high magnetic helicity, very low cross helicity, and highly negative residual energy, ... Zhao, L.-L.; Zank, G.; Adhikari, L.; Hu, Q.; Kasper, J.; Bale, S.; Korreck, K.; Case, A.; Stevens, M.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Larson, D.; Livi, R.; Whittlesey, P.; Klein, K.; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab4ff1 Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere We present initial results from the Radio Frequency Spectrometer, the high-frequency component of the FIELDS experiment on the Parker Solar Probe (PSP). During the first PSP solar encounter (2018 November), only a few small radio bursts were observed. During the second encounter (2019 April), copious type III radio bursts occurred, including intervals of radio storms where bursts occurred continuously. In this paper, we present initial observations of the characteristics of type III radio bursts in the inner heliosphere, ... Pulupa, Marc; Bale, Stuart; Badman, Samuel; Bonnell, J.; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Hegedus, Alexander; Kasper, Justin; Korreck, Kelly; Krasnoselskikh, Vladimir; Larson, Davin; Lecacheux, Alain; Livi, Roberto; MacDowall, Robert; Maksimovic, Milan; Malaspina, David; Oliveros, Juan; Meyer-Vernet, Nicole; Moncuquet, Michel; Stevens, Michael; Whittlesey, Phyllis; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab5dc0 Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
3 He-rich Solar Energetic Particle Observations at the Parker Solar Probe and near Earth The Integrated Science Investigation of the Sun (IS☉IS) instrument suite on the Parker Solar Probe (PSP) spacecraft is making in situ observations of energetic ions and electrons closer to the Sun than any previous mission. Using data collected during its first two orbits, which reached perihelion distances of 0.17 au, we have searched for \ 3\ He\ 3He -rich solar energetic particle (SEP) events under very quiet solar minimum conditions. On 2019-110-111 (April 20-21), \ 3\ He\ 3He -rich SEP ... Wiedenbeck, M.; ik, Bu\v; Mason, G.; Ho, G.; Leske, R.; Cohen, C.; Christian, E.; Cummings, A.; Davis, A.; Desai, M.; Giacalone, J.; Haggerty, D.; Hill, M.; Joyce, C.; Labrador, A.; Malandraki, O.; Matthaeus, W.; McComas, D.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Posner, A.; Rankin, J.; Roelof, E.; Schwadron, N.; Stone, E.; Szalay, J.; Bale, S.; Case, A.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Pulupa, M.; Stevens, M.; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab5963 |
Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade One of the most striking observations made by Parker Solar Probe during its first solar encounter is the omnipresence of rapid polarity reversals in a magnetic field that is otherwise mostly radial. These so-called switchbacks strongly affect the dynamics of the magnetic field. We concentrate here on their macroscopic properties. First, we find that these structures are self-similar, and have neither a characteristic magnitude, nor a characteristic duration. Their waiting time statistics show evidence of aggregation. The ... de Wit, Thierry; Krasnoselskikh, Vladimir; Bale, Stuart; Bonnell, John; Bowen, Trevor; Chen, Christopher; Froment, Clara; Goetz, Keith; Harvey, Peter; Jagarlamudi, Vamsee; Larosa, Andrea; MacDowall, Robert; Malaspina, David; Matthaeus, William; Pulupa, Marc; Velli, Marco; Whittlesey, Phyllis; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab5853 Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
Switchbacks (rotations of the magnetic field) are observed on the Parker Solar Probe. Their evolution, content, and plasma effects are studied in this paper. The solar wind does not receive a net acceleration from switchbacks that it encountered upstream of the observation point. The typical switchback rotation angle increased with radial distance. Significant Poynting fluxes existed inside, but not outside, switchbacks, and the dependence of the Poynting flux amplitude on the switchback radial location and rotation angle ... Mozer, F.; Agapitov, O.; Bale, S.; Bonnell, J.; Case, T.; Chaston, C.; Curtis, D.; de Wit, Dudok; Goetz, K.; Goodrich, K.; Harvey, P.; Kasper, J.; Korreck, K.; Krasnoselskikh, V.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.; Whittlesey, P.; Wygant, J.; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab7196 |
Turbulence Transport Modeling and First Orbit Parker Solar Probe ( PSP ) Observations The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R☉). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R☉ and 131.64 R☉ in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding cor ... Adhikari, L.; Zank, G.; Zhao, L.-L.; Kasper, J.; Korreck, K.; Stevens, M.; Case, A.; Whittlesey, P.; Larson, D.; Livi, R.; Klein, K.; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab5852 Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
Quantifying Weather Effects on Ka-band Communication Links: A Parker Solar Probe Study Nikoukar, Romina; Copeland, David; Sprouse, Sean; Cox, Matthew; Kufahl, Katelyn; Published by: Published on: YEAR: 2020   DOI: 10.1109/AERO47225.2020.9172786 |
Parker Solar Probe s 1st Year of Ka-band Operations Cox, Matthew; Copeland, David; Nikoukar, Romina; Sprouse, Sean; Published by: Published on: YEAR: 2020   DOI: 10.1109/AERO47225.2020.9172588 |
2019 |
No Evidence for Critical Balance in Field-aligned Alfv\ enic Solar Wind Turbulence Telloni, Daniele; Carbone, Francesco; Bruno, Roberto; Sorriso-Valvo, Luca; Zank, Gary; Adhikari, Laxman; Hunana, Peter; Published by: \apj Published on: 12/2019 YEAR: 2019   DOI: 10.3847/1538-4357/ab517b Parker Data Used; interplanetary turbulence; Solar wind; Space plasmas; Alfven waves; Interplanetary medium; Magnetohydrodynamics; 830; 1534; 1544; 23; 825; 1964 |
The electric and magnetic field instrument suite FIELDS on board the NASA Parker Solar Probe and the radio and plasma waves instrument RPW on the ESA Solar Orbiter mission that explore the inner heliosphere are sensitive to signals generated by dust impacts. Dust impacts have been observed using electric field antennas on spacecraft since the 1980s and the method was recently used with a number of space missions to derive dust fluxes. Here, we consider the details of dust impacts, subsequent development of the impact gene ... Mann, Ingrid; ak, Libor; Vaverka, Jakub; Antonsen, Tarjei; Fredriksen, \r; Issautier, Karine; Malaspina, David; Meyer-Vernet, Nicole; u, Ji\v; Sternovsky, Zoltan; Stude, Joan; Ye, Shengyi; Zaslavsky, Arnaud; Published by: Annales Geophysicae Published on: 12/2019 YEAR: 2019   DOI: 10.5194/angeo-37-1121-2019 |
Highly structured slow solar wind emerging from an equatorial coronal hole During the solar minimum, when the Sun is at its least active, the solar wind is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfv\ enic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain; theories and observations suggest that they may originate at the tips of ... Bale, S.; Badman, S.; Bonnell, J.; Bowen, T.; Burgess, D.; Case, A.; Cattell, C.; Chandran, B.; Chaston, C.; Chen, C.; Drake, J.; de Wit, Dudok; Eastwood, J.; Ergun, R.; Farrell, W.; Fong, C.; Goetz, K.; Goldstein, M.; Goodrich, K.; Harvey, P.; Horbury, T.; Howes, G.; Kasper, J.; Kellogg, P.; Klimchuk, J.; Korreck, K.; Krasnoselskikh, V.; Krucker, S.; Laker, R.; Larson, D.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Martinez-Oliveros, J.; McComas, D.; Meyer-Vernet, N.; Moncuquet, M.; Mozer, F.; Phan, T.; Pulupa, M.; Raouafi, N.; Salem, C.; Stansby, D.; Stevens, M.; Szabo, A.; Velli, M.; Woolley, T.; Wygant, J.; Published by: Nature Published on: 12/2019 YEAR: 2019   DOI: 10.1038/s41586-019-1818-7 |
Validation of MHD Model Predictions of the Corona with LASCO-C2 Polarized Brightness Images Progress in our understanding of the solar corona requires that the results of advanced magnetohydrodynamic models driven by measured magnetic fields, and particularly the underlying heating models, be thoroughly compared with coronal observations. The comparison has so far mainly concerned the global morphology of the corona, synthetic images calculated from the models being compared with observed images. We go one step further by performing detailed quantitative comparisons between the calculated polarized radiance p B ... Lamy, Philippe; Floyd, Olivier; Mikic, Zoran; Riley, Pete; Published by: Solar Physics Published on: 11/2019 YEAR: 2019   DOI: 10.1007/s11207-019-1549-9 Corona; Eclipses; LASCO; Magnetohydrodynamics; Observations; Parker Data Used; parker solar probe; quiet; Solar Probe Plus |
NASA\textquoterights Parker Solar Probe (PSP) spacecraft reached its first perihelion of 35.7 solar radii on 2018 November 5. To aid in mission planning, and in anticipation of the unprecedented measurements to be returned, in late October, we developed a three-dimensional magnetohydrodynamic (MHD) solution for the solar corona and inner heliosphere, driven by the then available observations of the Sun\textquoterights photospheric magnetic field. Our model incorporates a wave-turbulence-driven model to heat the corona. He ... Riley, Pete; Downs, Cooper; Linker, Jon; Mikic, Zoran; Lionello, Roberto; Caplan, Ronald; Published by: The Astrophysical Journal Published on: 04/2019 YEAR: 2019   DOI: 10.3847/2041-8213/ab0ec3 Astrophysics - Solar and Stellar Astrophysics; magnetohydrodynamics: MHD; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere; Sun: magnetic fields; waves |
Whistler Fan Instability Driven by Strahl Electrons in the Solar Wind Vasko, I.~Y.; Krasnoselskikh, V.; Tong, Y.; Bale, S.~D.; Bonnell, J.~W.; Mozer, F.~S.; Published by: \apjl Published on: 02/2019 YEAR: 2019   DOI: 10.3847/2041-8213/ab01bd Parker Data Used; conduction; instabilities; plasmas; scattering; Solar wind; waves |
Inherentness of Non-stationarity in Solar Wind Jagarlamudi, Vamsee; de Wit, Thierry; Krasnoselskikh, Vladimir; Maksimovic, Milan; Published by: \apj Published on: 01/2019 YEAR: 2019   DOI: 10.3847/1538-4357/aaef2e |
1 2