PSP Bibliography



Found 131 entries in the Bibliography.


Showing entries from 1 through 50


2020

Shear-driven Transition to Isotropically Turbulent Solar Wind Outside the Alfv\ en Critical Zone

Motivated by prior remote observations of a transition from striated\ solar\ coronal structures to more isotropic "flocculated" fluctuations, we propose that the dynamics of the inner\ solar\ wind just outside the Alfven critical zone, and in the vicinity of the first beta = 1 surface, is powered by the relative velocities of adjacent coronal magnetic flux tubes. We suggest that large-amplitude flow contrasts are magnetically constrained at lower altitude but shear-driven dynamics are triggered as such ...

Ruffolo, D.; Matthaeus, W.; Chhiber, R.; Usmanov, A.; Yang, Y.; Bandyopadhyay, R.; Parashar, T.; Goldstein, M.; DeForest, C.; Wan, M.; Chasapis, A.; Maruca, B.; Velli, M.; Kasper, J.;

YEAR: 2020     DOI: 10.3847/1538-4357/abb594

Parker Data Used; parker solar probe; Solar Probe Plus

Small Electron Events Observed by Parker Solar Probe/IS⊙IS during Encounter 2

The current understanding of the characteristics of\ solar\ and inner heliospheric electron events is inferred almost entirely from observations made by spacecraft located at 1 astronomical unit (au). Previous observations within 1 au of the Sun, by the Helios spacecraft at similar to 0.3-1 au, indicate the presence of electron events that are not detected at 1 au or may have merged during transport from the Sun.\ Parker\ Solar\ Probe\textquoterights close proximity to the Sun at perihelion provid ...

Mitchell, J.; de Nolfo, G.; Hill, M.; Christian, E.; McComas, D.; Schwadron, N.; Wiedenbeck, M.; Bale, S.; Case, A.; Cohen, C.; Joyce, C.; Kasper, J.; Labrador, A.; Leske, R.; MacDowall, R.; Mewaldt, R.; Mitchell, D.; Pulupa, M.; Richardson, I.; Stevens, M.; Szalay, J.;

YEAR: 2020     DOI: 10.3847/1538-4357/abb2a4

Parker Data Used; parker solar probe; Radio bursts; Solar energetic particles; solar flares; Solar particle emission; Solar Physics; Solar Probe Plus

The Solar Wind Angular Momentum Flux as Observed by Parker Solar Probe

he long-term evolution of the Sun\textquoterights rotation period cannot be directly observed, and is instead inferred from trends in the measured rotation periods of other Sun-like stars. Assuming the Sun spins down as it ages, following rotation rate proportional to age(-1/2), requires the current\ solar\ angular momentum (AM) loss rate to be around 6 x 10(30)erg. Magnetohydrodynamic models, and previous observations of the\ solar\ wind (from the Helios and Wind spacecraft), generally predict a value ...

Finley, Adam; Matt, Sean; eville, Victor; Pinto, Rui; Owens, Mathew; Kasper, Justin; Korreck, Kelly; Case, A.; Stevens, Michael; Whittlesey, Phyllis; Larson, Davin; Livi, Roberto;

YEAR: 2020     DOI: 10.3847/2041-8213/abb9a5

Parker Data Used; parker solar probe; Solar evolution; Solar Physics; Solar Probe Plus; Solar rotation; Solar wind; Stellar evolution; Stellar physics; Stellar rotation

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes

Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretic ...

Florido-Llinas, M.; Nieves-Chinchilla, T.; Linton, M.;

YEAR: 2020     DOI: 10.1007/s11207-020-01687-z

coronal mass ejections; Flux ropes; Kink instability; magnetic fields; parker solar probe; Solar Probe Plus; Twist distribution

The Solar Origin of Particle Events Measured by Parker Solar Probe

During the second solar encounter phase of Parker Solar Probe (PSP), two small solar energetic particle (SEP) events were observed by the Integrated Science Investigation of the Sun, on 2019 April 2 and 4. At the time, PSP was approaching its second perihelion at a distance of \~24.8 million kilometers from the solar center, it was in near-radial alignment with STEREO-A and in quadrature with Earth. During the two SEP events multiple narrow ejections and a streamer-blowout coronal mass ejection (SBO-CME) originated from a ...

Kouloumvakos, Athanasios; Vourlidas, Angelos; Rouillard, Alexis; Roelof, Edmond; Leske, Rick; Pinto, Rui; Poirier, Nicolas;

YEAR: 2020     DOI: 10.3847/1538-4357/aba5a1

Parker Data Used; parker solar probe; Solar coronal mass ejection shocks; Solar coronal mass ejections; Solar energetic particles; Solar particle emission; Solar Probe Plus

Magnetic Field Dropouts at Near-Sun Switchback Boundaries: A Superposed Epoch Analysis

During Parker Solar Probe\textquoterights first close encounter with the Sun in early 2018 November, a large number of impulsive rotations in the magnetic field were detected within 50 Rs; these also occurred in association with short-lived impulsive solar wind bursts in speed. These impulsive features are now called "switchback" events. We examined a set of these switchbacks where the boundary transition into and out of the switchback was abrupt, with fast B rotations and simultaneous solar wind speed changes ...

Farrell, W.; MacDowall, R.; Gruesbeck, J.; Bale, S.; Kasper, J.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab9eba

Parker Data Used; parker solar probe; Solar Physics; Solar Probe Plus; Solar wind; The Sun

On the Shape of SEP Electron Spectra: The Role of Interplanetary Transport

We address the effect of particle scattering on the energy spectra of solar energetic electron events using (I) an observational and (II) a modeling approach. (I) We statistically study observations of the STEREO spacecraft, using directional electron measurements made with the Solar Electron and Proton Telescope in the range of 45-425 keV. We compare the energy spectra of the anti-Sunward propagating beam with that of the backward-scattered population and find that, on average, the backward-scattered population shows a h ...

Strauss, R.; Dresing, N.; Kollhoff, A.; Brüdern, M.;

YEAR: 2020     DOI: 10.3847/1538-4357/ab91b0

1491; 1693; 830; parker solar probe; Solar Probe Plus

The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au

The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was ...

Lario, D.; Balmaceda, L.; Alzate, N.; Mays, M.; Richardson, I.; Allen, R.; Florido-Llinas, M.; Nieves-Chinchilla, T.; Koval, A.; Lugaz, N.; Jian, L.; Arge, C.; Macneice, P.; Odstrcil, D.; Morgan, H.; Szabo, A.; Desai, M.; Whittlesey, P.; Stevens, M.; Ho, G.; Luhmann, J.;

YEAR: 2020     DOI: 10.3847/1538-4357/ab9942

parker solar probe; Solar Probe Plus

The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au

The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was ...

Lario, D.; Balmaceda, L.; Alzate, N.; Mays, M.; Richardson, I.; Allen, R.; Florido-Llinas, M.; Nieves-Chinchilla, T.; Koval, A.; Lugaz, N.; Jian, L.; Arge, C.; Macneice, P.; Odstrcil, D.; Morgan, H.; Szabo, A.; Desai, M.; Whittlesey, P.; Stevens, M.; Ho, G.; Luhmann, J.;

YEAR: 2020     DOI: 10.3847/1538-4357/ab9942

parker solar probe; Solar Probe Plus

The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au

The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was ...

Lario, D.; Balmaceda, L.; Alzate, N.; Mays, M.; Richardson, I.; Allen, R.; Florido-Llinas, M.; Nieves-Chinchilla, T.; Koval, A.; Lugaz, N.; Jian, L.; Arge, C.; Macneice, P.; Odstrcil, D.; Morgan, H.; Szabo, A.; Desai, M.; Whittlesey, P.; Stevens, M.; Ho, G.; Luhmann, J.;

YEAR: 2020     DOI: 10.3847/1538-4357/ab9942

parker solar probe; Solar Probe Plus

The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au

The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was ...

Lario, D.; Balmaceda, L.; Alzate, N.; Mays, M.; Richardson, I.; Allen, R.; Florido-Llinas, M.; Nieves-Chinchilla, T.; Koval, A.; Lugaz, N.; Jian, L.; Arge, C.; Macneice, P.; Odstrcil, D.; Morgan, H.; Szabo, A.; Desai, M.; Whittlesey, P.; Stevens, M.; Ho, G.; Luhmann, J.;

YEAR: 2020     DOI: 10.3847/1538-4357/ab9942

Parker Data Used; parker solar probe; Solar Probe Plus

The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au

The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was ...

Lario, D.; Balmaceda, L.; Alzate, N.; Mays, M.; Richardson, I.; Allen, R.; Florido-Llinas, M.; Nieves-Chinchilla, T.; Koval, A.; Lugaz, N.; Jian, L.; Arge, C.; Macneice, P.; Odstrcil, D.; Morgan, H.; Szabo, A.; Desai, M.; Whittlesey, P.; Stevens, M.; Ho, G.; Luhmann, J.;

YEAR: 2020     DOI: 10.3847/1538-4357/ab9942

Parker Data Used; parker solar probe; Solar Probe Plus

The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au

The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was ...

Lario, D.; Balmaceda, L.; Alzate, N.; Mays, M.; Richardson, I.; Allen, R.; Florido-Llinas, M.; Nieves-Chinchilla, T.; Koval, A.; Lugaz, N.; Jian, L.; Arge, C.; Macneice, P.; Odstrcil, D.; Morgan, H.; Szabo, A.; Desai, M.; Whittlesey, P.; Stevens, M.; Ho, G.; Luhmann, J.;

YEAR: 2020     DOI: 10.3847/1538-4357/ab9942

Parker Data Used; parker solar probe; Solar Probe Plus

Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence

We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U., with a power-law index of around -4 . Based on our measurements, we demonstrate that either a significant (\>50 \%) fraction of the total turbulent energy flux is dissipated in this range of scales ...

Bowen, Trevor; Mallet, Alfred; Bale, Stuart; Bonnell, J.; Case, Anthony; Chandran, Benjamin; Chasapis, Alexandros; Chen, Christopher; Duan, Die; de Wit, Thierry; Goetz, Keith; Halekas, Jasper; Harvey, Peter; Kasper, J.; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; McManus, Michael; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.1103/PhysRevLett.125.025102

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Editorial: Solar Wind at the Dawn of the Parker Solar Probe and Solar Orbiter Era

Solar Wind 15 brought together almost 250 experts from all continents of the world to discuss the current trends and future perspectives of the research on the Sun and its solar wind. The present article collection recaptures some of the highlights of their contributions.

Lapenta, Giovanni; Zhukov, Andrei; van Driel-Gesztelyi, Lidia;

YEAR: 2020     DOI: 10.1007/s11207-020-01670-8

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind

Kinetic Scale Slow Solar Wind Turbulence in the Inner Heliosphere: Coexistence of Kinetic Alfv\ en Waves and Alfv\ en Ion Cyclotron Waves

The nature of the plasma wave modes around the ion kinetic scales in highly Alfv\ enic slow solar wind turbulence is investigated using data from the NASA\textquoterights Parker Solar Probe taken in the inner heliosphere, at 0.18 au from the Sun. The joint distribution of the normalized reduced magnetic helicity σmRB, τ) is obtained, where θRB is the angle between the local mean magnetic field and the radial direction and τ is the temporal scale. Two populations around ion scales a ...

. Y. Huang, S; Zhang, J.; Sahraoui, F.; He, J.; Yuan, Z.; es, Andr\; Hadid, L.; Deng, X.; Jiang, K.; Yu, L.; . Y. Xiong, Q; . Y. Wei, Y; Xu, S.; Bale, S.; Kasper, J.;

YEAR: 2020     DOI: 10.3847/2041-8213/ab9abb

1261; 1534; 1544; 1693; 1873; 23; 711; 824; 830; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe\textquoterights First Orbit

We present heliospheric current sheet (HCS) and plasma sheet (HPS) observations during Parker Solar Probe\textquoterights (PSP) first orbit around the Sun. We focus on the eight intervals that display a true sector boundary (TSB; based on suprathermal electron pitch angle distributions) with one or several associated current sheets. The analysis shows that (1) the main density enhancements in the vicinity of the TSB and HCS are typically associated with electron strahl dropouts, implying magnetic disconnection from the Su ...

Lavraud, B.; Fargette, N.; eville, V.; Szabo, A.; Huang, J.; Rouillard, A.; Viall, N.; Phan, T.; Kasper, J.; Bale, S.; Berthomier, M.; Bonnell, J.; Case, A.; de Wit, Dudok; Eastwood, J.; enot, V.; Goetz, K.; Griton, L.; Halekas, J.; Harvey, P.; Kieokaew, R.; Klein, K.; Korreck, K.; Kouloumvakos, A.; Larson, D.; Lavarra, M.; Livi, R.; Louarn, P.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Nieves-Chinchilla, T.; Pinto, R.; Poirier, N.; Pulupa, M.; Raouafi, N.; Stevens, M.; Toledo-Redondo, S.; Whittlesey, P.;

YEAR: 2020     DOI: 10.3847/2041-8213/ab8d2d

Parker Data Used; parker solar probe; Solar Probe Plus

The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe\textquoterights First Orbit

We present heliospheric current sheet (HCS) and plasma sheet (HPS) observations during Parker Solar Probe\textquoterights (PSP) first orbit around the Sun. We focus on the eight intervals that display a true sector boundary (TSB; based on suprathermal electron pitch angle distributions) with one or several associated current sheets. The analysis shows that (1) the main density enhancements in the vicinity of the TSB and HCS are typically associated with electron strahl dropouts, implying magnetic disconnection from the Su ...

Lavraud, B.; Fargette, N.; eville, V.; Szabo, A.; Huang, J.; Rouillard, A.; Viall, N.; Phan, T.; Kasper, J.; Bale, S.; Berthomier, M.; Bonnell, J.; Case, A.; de Wit, Dudok; Eastwood, J.; enot, V.; Goetz, K.; Griton, L.; Halekas, J.; Harvey, P.; Kieokaew, R.; Klein, K.; Korreck, K.; Kouloumvakos, A.; Larson, D.; Lavarra, M.; Livi, R.; Louarn, P.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Nieves-Chinchilla, T.; Pinto, R.; Poirier, N.; Pulupa, M.; Raouafi, N.; Stevens, M.; Toledo-Redondo, S.; Whittlesey, P.;

YEAR: 2020     DOI: 10.3847/2041-8213/ab8d2d

Parker Data Used; parker solar probe; Solar Probe Plus

A Merged Search-Coil and Fluxgate Magnetometer Data Product for Parker Solar Probe FIELDS

NASA\textquoterights Parker Solar Probe (PSP) mission is currently investigating the local plasma environment of the inner heliosphere (\<0.25 R) using both in situ and remote sensing instrumentation. Connecting signatures of microphysical particle heating and acceleration processes to macroscale heliospheric structure requires sensitive measurements of electromagnetic fields over a large range of physical scales. The FIELDS instrument, which provides PSP with in situ measurements of electromagnetic field ...

Bowen, T.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Goodrich, K.; Gruesbeck, J.; Harvey, P.; Jannet, G.; Koval, A.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Revillet, C.; Sheppard, D.; Szabo, A.;

YEAR: 2020     DOI: 10.1029/2020JA027813

Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Instrumentation and Detectors; Physics - Space Physics; Solar Probe Plus

Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves

Parker Solar Probe (PSP), NASA\textquoterights latest and closest mission to the Sun, is on a journey to investigate fundamental enigmas of the inner heliosphere. This paper reports initial observations made by the Solar Probe Analyzer for Ions (SPAN-I), one of the instruments in the Solar Wind Electrons Alphas and Protons instrument suite. We address the presence of secondary proton beams in concert with ion-scale waves observed by FIELDS, the electromagnetic fields instrument suite. We show two events from PSP\textquote ...

Verniero, J.; Larson, D.; Livi, R.; Rahmati, A.; McManus, M.; Pyakurel, Sharma; Klein, K.; Bowen, T.; Bonnell, J.; Alterman, B.; Whittlesey, P.; Malaspina, David; Bale, S.; Kasper, J.; Case, A.; Goetz, K.; Harvey, P.; Korreck, K.; MacDowall, R.; Pulupa, M.; Stevens, M.; de Wit, Dudok;

YEAR: 2020     DOI: 10.3847/1538-4365/ab86af

Alfv\ en waves; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Plasma physics; Solar Probe Plus; Solar wind; Space plasmas

Coronal Electron Temperature Inferred from the Strahl Electrons in the Inner Heliosphere: Parker Solar Probe and Helios Observations

The shape of the electron velocity distribution function plays an important role in the dynamics of the solar wind acceleration. Electrons are normally modeled with three components, the core, the halo, and the strahl. We investigate how well the fast strahl electrons in the inner heliosphere preserve the information about the coronal electron temperature at their origin. We analyzed the data obtained by two missions, Helios, spanning the distances between 65 and 215 RS, and Parker Solar Probe (PSP), reaching d ...

c, Laura; Larson, Davin; Whittlesey, Phyllis; Maksimovic, Milan; Badman, Samuel; Landi, Simone; Matteini, Lorenzo; Bale, Stuart.; Bonnell, John; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Stevens, Michael;

YEAR: 2020     DOI: 10.3847/1538-4357/ab7b7a

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Sunward-propagating Whistler Waves Collocated with Localized Magnetic Field Holes in the Solar Wind: Parker Solar Probe Observations at 35.7 R Radii

Observations by the Parker Solar Probe mission of the solar wind at \~35.7 solar radii reveal the existence of whistler wave packets with frequencies below 0.1 fce (20-80 Hz in the spacecraft frame). These waves often coincide with local minima of the magnetic field magnitude or with sudden deflections of the magnetic field that are called switchbacks. Their sunward propagation leads to a significant Doppler frequency downshift from 200-300 to 20-80 Hz (from 0.2 to 0.5 fce). The polarization of these ...

Agapitov, O.; de Wit, Dudok; Mozer, F.; Bonnell, J.; Drake, J.; Malaspina, D.; Krasnoselskikh, V.; Bale, S.; Whittlesey, P.; Case, A.; Chaston, C.; Froment, C.; Goetz, K.; Goodrich, K.; Harvey, P.; Kasper, J.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Pulupa, M.; Revillet, C.; Stevens, M.; Wygant, J.;

YEAR: 2020     DOI: 10.3847/2041-8213/ab799c

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Dependence of the Interplanetary Magnetic Field on Heliocentric Distance at 0.3\textendash1.7~AU: A Six-Spacecraft Study

We use magnetometer data taken simultaneously by MESSENGER, VEX, STEREO and ACE to characterize the variation of the interplanetary magnetic field (IMF) with heliocentric distance, rh, for rh≲ 1 AU. Power law fits (a rh b) to the individual IMF components and magnitude indicate that, on average, the IMF is more tightly wound and its strength decreases less rapidly with rh than the Parker spiral prediction. During Solar Cycle 24, temporal changes in b were insignificant, but changes in amplitude, a, were correlated with ...

Hanneson, Cedar; Johnson, Catherine; Mittelholz, Anna; Asad, Manar; Goldblatt, Colin;

YEAR: 2020     DOI: 10.1029/2019JA027139

Heliosphere; IMF; interplanetary magnetic field; Mars; Mercury; parker solar probe; Solar Probe Plus; Venus

Sharp Alfv\ enic Impulses in the Near-Sun Solar Wind

Measurements of the near-Sun solar wind by the Parker Solar Probe have revealed the presence of large numbers of discrete Alfv\ enic impulses with an anti-sunward sense of propagation. These are similar to those previously observed near 1 au, in high speed streams over the Sun\textquoterights poles and at 60 solar radii. At 35 solar radii, however, they are typically shorter and sharper than seen elsewhere. In addition, these spikes occur in "patches" and there are also clear periods within the same stream when they do no ...

Horbury, Timothy; Woolley, Thomas; Laker, Ronan; Matteini, Lorenzo; Eastwood, Jonathan; Bale, Stuart; Velli, Marco; Chandran, Benjamin; Phan, Tai; Raouafi, Nour; Goetz, Keith; Harvey, Peter; Pulupa, Marc; Klein, K.; de Wit, Thierry; Kasper, Justin; Korreck, Kelly; Case, A.; Stevens, Michael; Whittlesey, Phyllis; Larson, Davin; MacDowall, Robert; Malaspina, David; Livi, Roberto;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5b15

Parker Data Used; parker solar probe; Solar Probe Plus

Small, Low-energy, Dispersive Solar Energetic Particle Events Observed by Parker Solar Probe

The Energetic Particle Instrument-Low Energy (EPI-Lo) experiment has detected several weak, low-energy (̃30-300 keV nucleon-1) solar energetic particle (SEP) events during its first two closest approaches to the Sun, providing a unique opportunity to explore the sources of low-energy particle acceleration. As part of the Parker Solar Probe (PSP) Integrated Science Investigation of the Sun (IS☉IS) suite, EPI-Lo was designed to investigate the physics of energetic particles; however, in the special lowest-ener ...

Hill, M.; Mitchell, D.; Allen, R.; de Nolfo, G.; Vourlidas, A.; Brown, L.; Jones, S.; McComas, D.; McNutt, R.; Mitchell, J.; Szalay, J.; Wallace, S.; Arge, C.; Christian, E.; Cohen, C.; Crew, A.; Desai, M.; Giacalone, J.; Henney, C.; Joyce, C.; Krimigis, S.; Leske, R.; Mewaldt, R.; Nelson, K.; Roelof, E.; Schwadron, N.; Wiedenbeck, M.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab643d

Parker Data Used; parker solar probe; Solar Probe Plus

Small, Low-energy, Dispersive Solar Energetic Particle Events Observed by Parker Solar Probe

The Energetic Particle Instrument-Low Energy (EPI-Lo) experiment has detected several weak, low-energy (̃30-300 keV nucleon-1) solar energetic particle (SEP) events during its first two closest approaches to the Sun, providing a unique opportunity to explore the sources of low-energy particle acceleration. As part of the Parker Solar Probe (PSP) Integrated Science Investigation of the Sun (IS☉IS) suite, EPI-Lo was designed to investigate the physics of energetic particles; however, in the special lowest-ener ...

Hill, M.; Mitchell, D.; Allen, R.; de Nolfo, G.; Vourlidas, A.; Brown, L.; Jones, S.; McComas, D.; McNutt, R.; Mitchell, J.; Szalay, J.; Wallace, S.; Arge, C.; Christian, E.; Cohen, C.; Crew, A.; Desai, M.; Giacalone, J.; Henney, C.; Joyce, C.; Krimigis, S.; Leske, R.; Mewaldt, R.; Nelson, K.; Roelof, E.; Schwadron, N.; Wiedenbeck, M.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab643d

Parker Data Used; parker solar probe; Solar Probe Plus

Small, Low-energy, Dispersive Solar Energetic Particle Events Observed by Parker Solar Probe

The Energetic Particle Instrument-Low Energy (EPI-Lo) experiment has detected several weak, low-energy (̃30-300 keV nucleon-1) solar energetic particle (SEP) events during its first two closest approaches to the Sun, providing a unique opportunity to explore the sources of low-energy particle acceleration. As part of the Parker Solar Probe (PSP) Integrated Science Investigation of the Sun (IS☉IS) suite, EPI-Lo was designed to investigate the physics of energetic particles; however, in the special lowest-ener ...

Hill, M.; Mitchell, D.; Allen, R.; de Nolfo, G.; Vourlidas, A.; Brown, L.; Jones, S.; McComas, D.; McNutt, R.; Mitchell, J.; Szalay, J.; Wallace, S.; Arge, C.; Christian, E.; Cohen, C.; Crew, A.; Desai, M.; Giacalone, J.; Henney, C.; Joyce, C.; Krimigis, S.; Leske, R.; Mewaldt, R.; Nelson, K.; Roelof, E.; Schwadron, N.; Wiedenbeck, M.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab643d

Parker Data Used; parker solar probe; Solar Probe Plus

Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at \~0.25 au

We present an analysis of Parker Solar Probe (PSP) IS☉IS observations of ̃30-300 keV n-1 ions on 2018 November 11 when PSP was about 0.25 au from the Sun. Five hours before the onset of a solar energetic particle (SEP) event, a coronal mass ejection (CME) was observed by STEREO-A/COR2, which crossed PSP about a day later. No shock was observed locally at PSP, but the CME may have driven a weak shock earlier. The SEP event was dispersive, with higher energy ions arriving before the lower energy ones. Timing s ...

Giacalone, J.; Mitchell, D.; Allen, R.; Hill, M.; McNutt, R.; Szalay, J.; Desai, M.; Rouillard, A.; Kouloumvakos, A.; McComas, D.; Christian, E.; Schwadron, N.; Wiedenbeck, M.; Bale, S.; Brown, L.; Case, A.; Chen, X.; Cohen, C.; Joyce, C.; Kasper, J.; Klein, K.; Korreck, K.; Larson, D.; Livi, R.; Leske, R.; MacDowall, R.; Matthaeus, W.; Mewaldt, R.; Nieves-Chinchilla, T.; Pulupa, M.; Roelof, E.; Stevens, M.; Szabo, A.; Whittlesey, P.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5221

Parker Data Used; parker solar probe; Solar Probe Plus

Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at \~0.25 au

We present an analysis of Parker Solar Probe (PSP) IS☉IS observations of ̃30-300 keV n-1 ions on 2018 November 11 when PSP was about 0.25 au from the Sun. Five hours before the onset of a solar energetic particle (SEP) event, a coronal mass ejection (CME) was observed by STEREO-A/COR2, which crossed PSP about a day later. No shock was observed locally at PSP, but the CME may have driven a weak shock earlier. The SEP event was dispersive, with higher energy ions arriving before the lower energy ones. Timing s ...

Giacalone, J.; Mitchell, D.; Allen, R.; Hill, M.; McNutt, R.; Szalay, J.; Desai, M.; Rouillard, A.; Kouloumvakos, A.; McComas, D.; Christian, E.; Schwadron, N.; Wiedenbeck, M.; Bale, S.; Brown, L.; Case, A.; Chen, X.; Cohen, C.; Joyce, C.; Kasper, J.; Klein, K.; Korreck, K.; Larson, D.; Livi, R.; Leske, R.; MacDowall, R.; Matthaeus, W.; Mewaldt, R.; Nieves-Chinchilla, T.; Pulupa, M.; Roelof, E.; Stevens, M.; Szabo, A.; Whittlesey, P.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5221

Parker Data Used; parker solar probe; Solar Probe Plus

Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at \~0.25 au

We present an analysis of Parker Solar Probe (PSP) IS☉IS observations of ̃30-300 keV n-1 ions on 2018 November 11 when PSP was about 0.25 au from the Sun. Five hours before the onset of a solar energetic particle (SEP) event, a coronal mass ejection (CME) was observed by STEREO-A/COR2, which crossed PSP about a day later. No shock was observed locally at PSP, but the CME may have driven a weak shock earlier. The SEP event was dispersive, with higher energy ions arriving before the lower energy ones. Timing s ...

Giacalone, J.; Mitchell, D.; Allen, R.; Hill, M.; McNutt, R.; Szalay, J.; Desai, M.; Rouillard, A.; Kouloumvakos, A.; McComas, D.; Christian, E.; Schwadron, N.; Wiedenbeck, M.; Bale, S.; Brown, L.; Case, A.; Chen, X.; Cohen, C.; Joyce, C.; Kasper, J.; Klein, K.; Korreck, K.; Larson, D.; Livi, R.; Leske, R.; MacDowall, R.; Matthaeus, W.; Mewaldt, R.; Nieves-Chinchilla, T.; Pulupa, M.; Roelof, E.; Stevens, M.; Szabo, A.; Whittlesey, P.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5221

Parker Data Used; parker solar probe; Solar Probe Plus

Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at \~0.25 au

We present an analysis of Parker Solar Probe (PSP) IS☉IS observations of ̃30-300 keV n-1 ions on 2018 November 11 when PSP was about 0.25 au from the Sun. Five hours before the onset of a solar energetic particle (SEP) event, a coronal mass ejection (CME) was observed by STEREO-A/COR2, which crossed PSP about a day later. No shock was observed locally at PSP, but the CME may have driven a weak shock earlier. The SEP event was dispersive, with higher energy ions arriving before the lower energy ones. Timing s ...

Giacalone, J.; Mitchell, D.; Allen, R.; Hill, M.; McNutt, R.; Szalay, J.; Desai, M.; Rouillard, A.; Kouloumvakos, A.; McComas, D.; Christian, E.; Schwadron, N.; Wiedenbeck, M.; Bale, S.; Brown, L.; Case, A.; Chen, X.; Cohen, C.; Joyce, C.; Kasper, J.; Klein, K.; Korreck, K.; Larson, D.; Livi, R.; Leske, R.; MacDowall, R.; Matthaeus, W.; Mewaldt, R.; Nieves-Chinchilla, T.; Pulupa, M.; Roelof, E.; Stevens, M.; Szabo, A.; Whittlesey, P.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5221

Parker Data Used; parker solar probe; Solar Probe Plus

The Solar Probe ANalyzers\textemdashElectrons on the Parker Solar Probe

Electrostatic analyzers of different designs have been used since the earliest days of the space age, beginning with the very earliest solar-wind measurements made by Mariner 2 en route to Venus in 1962. The Parker Solar Probe (PSP) mission, NASA\textquoterights first dedicated mission to study the innermost reaches of the heliosphere, makes its thermal plasma measurements using a suite of instruments called the Solar Wind Electrons, Alphas, and Protons (SWEAP) investigation. SWEAP\textquoterights electron PSP Analyzer (S ...

Whittlesey, Phyllis; Larson, Davin; Kasper, Justin; Halekas, Jasper; Abatcha, Mamuda; Abiad, Robert; Berthomier, M.; Case, A.; Chen, Jianxin; Curtis, David; Dalton, Gregory; Klein, Kristopher; Korreck, Kelly; Livi, Roberto; Ludlam, Michael; Marckwordt, Mario; Rahmati, Ali; Robinson, Miles; Slagle, Amanda; Stevens, M.; Tiu, Chris; Verniero, J.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab7370

Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar coronal heating; Solar instruments; Solar Probe Plus; Solar wind; Space plasmas

The Solar Probe Cup on the Parker Solar Probe

Solar Probe Cup (SPC) is a Faraday cup instrument on board NASA\textquoterights Parker Solar Probe (PSP) spacecraft designed to make rapid measurements of thermal coronal and solar wind plasma. The spacecraft is in a heliocentric orbit that takes it closer to the Sun than any previous spacecraft, allowing measurements to be made where the coronal and solar wind plasma is being heated and accelerated. The SPC instrument was designed to be pointed directly at the Sun at all times, allowing the solar wind (which is flowing p ...

Case, A.; Kasper, Justin; Stevens, Michael; Korreck, Kelly; Paulson, Kristoff; Daigneau, Peter; Caldwell, Dave; Freeman, Mark; Henry, Thayne; Klingensmith, Brianna; Bookbinder, J.; Robinson, Miles; Berg, Peter; Tiu, Chris; Wright, K.; Reinhart, Matthew; Curtis, David; Ludlam, Michael; Larson, Davin; Whittlesey, Phyllis; Livi, Roberto; Klein, Kristopher; c, Mihailo;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5a7b

Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au

Several fast solar wind streams and stream interaction regions (SIRs) were observed by the Parker Solar Probe (PSP) during its first orbit (2018 September-2019 January). During this time, several recurring SIRs were also seen at 1 au at both L1 (Advanced Composition Explorer (ACE) and Wind) and the location of the Solar Terrestrial Relations Observatory-Ahead (STEREO-A). In this paper, we compare four fast streams observed by PSP at different radial distances during its first orbit. For three of these fast stream events, ...

Allen, R.; Lario, D.; Odstrcil, D.; Ho, G.; Jian, L.; Cohen, C.; Badman, S.; Jones, S.; Arge, C.; Mays, M.; Mason, G.; Bale, S.; Bonnell, J.; Case, A.; Christian, E.; de Wit, Dudok; Goetz, K.; Harvey, P.; Henney, C.; Hill, M.; Kasper, J.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; McComas, D.; McNutt, R.; Mitchell, D.; Pulupa, M.; Raouafi, N.; Schwadron, N.; Stevens, M.; Whittlesey, P.; Wiedenbeck, M.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab578f

Parker Data Used; parker solar probe; Solar Probe Plus

Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au

Several fast solar wind streams and stream interaction regions (SIRs) were observed by the Parker Solar Probe (PSP) during its first orbit (2018 September-2019 January). During this time, several recurring SIRs were also seen at 1 au at both L1 (Advanced Composition Explorer (ACE) and Wind) and the location of the Solar Terrestrial Relations Observatory-Ahead (STEREO-A). In this paper, we compare four fast streams observed by PSP at different radial distances during its first orbit. For three of these fast stream events, ...

Allen, R.; Lario, D.; Odstrcil, D.; Ho, G.; Jian, L.; Cohen, C.; Badman, S.; Jones, S.; Arge, C.; Mays, M.; Mason, G.; Bale, S.; Bonnell, J.; Case, A.; Christian, E.; de Wit, Dudok; Goetz, K.; Harvey, P.; Henney, C.; Hill, M.; Kasper, J.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; McComas, D.; McNutt, R.; Mitchell, D.; Pulupa, M.; Raouafi, N.; Schwadron, N.; Stevens, M.; Whittlesey, P.; Wiedenbeck, M.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab578f

Parker Data Used; parker solar probe; Solar Probe Plus

Source and Propagation of a Streamer Blowout Coronal Mass Ejection Observed by the Parker Solar Probe

In the first orbit of the Parker Solar Probe (PSP), in situ thermal plasma and magnetic field measurements were collected as close as 35 RSun from the Sun, an environment that had not been previously explored. During the first orbit of PSP, the spacecraft flew through a streamer blowout coronal mass ejection (SBO-CME) on 2018 November 11 at 23:50 UT as it exited the science encounter. The SBO-CME on November 11 was directed away from the Earth and was not visible by L1 or Earth-based telescopes due to this geom ...

Korreck, Kelly; Szabo, Adam; Chinchilla, Teresa; Lavraud, Benoit; Luhmann, Janet; Niembro, Tatiana; Higginson, Aleida; Alzate, Nathalia; Wallace, Samantha; Paulson, Kristoff; Rouillard, Alexis; Kouloumvakos, Athanasios; Poirier, Nicolas; Kasper, Justin; Case, A.; Stevens, Michael; Bale, Stuart; Pulupa, Marc; Whittlesey, Phyllis; Livi, Roberto; Goetz, Keith; Larson, Davin; Malaspina, David; Morgan, Huw; Narock, Ayris; Schwadron, Nathan; Bonnell, John; Harvey, Peter; Wygant, John;

YEAR: 2020     DOI: 10.3847/1538-4365/ab6ff9

Parker Data Used; parker solar probe; Solar Probe Plus

Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere

We present initial results from the Radio Frequency Spectrometer, the high-frequency component of the FIELDS experiment on the Parker Solar Probe (PSP). During the first PSP solar encounter (2018 November), only a few small radio bursts were observed. During the second encounter (2019 April), copious type III radio bursts occurred, including intervals of radio storms where bursts occurred continuously. In this paper, we present initial observations of the characteristics of type III radio bursts in the inner heliosphere, ...

Pulupa, Marc; Bale, Stuart; Badman, Samuel; Bonnell, J.; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Hegedus, Alexander; Kasper, Justin; Korreck, Kelly; Krasnoselskikh, Vladimir; Larson, Davin; Lecacheux, Alain; Livi, Roberto; MacDowall, Robert; Maksimovic, Milan; Malaspina, David; Oliveros, Juan; Meyer-Vernet, Nicole; Moncuquet, Michel; Stevens, Michael; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5dc0

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere

We present initial results from the Radio Frequency Spectrometer, the high-frequency component of the FIELDS experiment on the Parker Solar Probe (PSP). During the first PSP solar encounter (2018 November), only a few small radio bursts were observed. During the second encounter (2019 April), copious type III radio bursts occurred, including intervals of radio storms where bursts occurred continuously. In this paper, we present initial observations of the characteristics of type III radio bursts in the inner heliosphere, ...

Pulupa, Marc; Bale, Stuart; Badman, Samuel; Bonnell, J.; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Hegedus, Alexander; Kasper, Justin; Korreck, Kelly; Krasnoselskikh, Vladimir; Larson, Davin; Lecacheux, Alain; Livi, Roberto; MacDowall, Robert; Maksimovic, Milan; Malaspina, David; Oliveros, Juan; Meyer-Vernet, Nicole; Moncuquet, Michel; Stevens, Michael; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5dc0

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Space Physics; Solar Probe Plus

3 He-rich Solar Energetic Particle Observations at the Parker Solar Probe and near Earth

The Integrated Science Investigation of the Sun (IS☉IS) instrument suite on the Parker Solar Probe (PSP) spacecraft is making in situ observations of energetic ions and electrons closer to the Sun than any previous mission. Using data collected during its first two orbits, which reached perihelion distances of 0.17 au, we have searched for \ 3\ He\ 3He -rich solar energetic particle (SEP) events under very quiet solar minimum conditions. On 2019-110-111 (April 20-21), \ 3\ He\ 3He -rich SEP ...

Wiedenbeck, M.; ik, Bu\v; Mason, G.; Ho, G.; Leske, R.; Cohen, C.; Christian, E.; Cummings, A.; Davis, A.; Desai, M.; Giacalone, J.; Haggerty, D.; Hill, M.; Joyce, C.; Labrador, A.; Malandraki, O.; Matthaeus, W.; McComas, D.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Posner, A.; Rankin, J.; Roelof, E.; Schwadron, N.; Stone, E.; Szalay, J.; Bale, S.; Case, A.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Pulupa, M.; Stevens, M.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5963

Parker Data Used; parker solar probe; Solar Probe Plus

3 He-rich Solar Energetic Particle Observations at the Parker Solar Probe and near Earth

The Integrated Science Investigation of the Sun (IS☉IS) instrument suite on the Parker Solar Probe (PSP) spacecraft is making in situ observations of energetic ions and electrons closer to the Sun than any previous mission. Using data collected during its first two orbits, which reached perihelion distances of 0.17 au, we have searched for \ 3\ He\ 3He -rich solar energetic particle (SEP) events under very quiet solar minimum conditions. On 2019-110-111 (April 20-21), \ 3\ He\ 3He -rich SEP ...

Wiedenbeck, M.; ik, Bu\v; Mason, G.; Ho, G.; Leske, R.; Cohen, C.; Christian, E.; Cummings, A.; Davis, A.; Desai, M.; Giacalone, J.; Haggerty, D.; Hill, M.; Joyce, C.; Labrador, A.; Malandraki, O.; Matthaeus, W.; McComas, D.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Posner, A.; Rankin, J.; Roelof, E.; Schwadron, N.; Stone, E.; Szalay, J.; Bale, S.; Case, A.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Pulupa, M.; Stevens, M.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5963

Parker Data Used; parker solar probe; Solar Probe Plus

Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade

One of the most striking observations made by Parker Solar Probe during its first solar encounter is the omnipresence of rapid polarity reversals in a magnetic field that is otherwise mostly radial. These so-called switchbacks strongly affect the dynamics of the magnetic field. We concentrate here on their macroscopic properties. First, we find that these structures are self-similar, and have neither a characteristic magnitude, nor a characteristic duration. Their waiting time statistics show evidence of aggregation. The ...

de Wit, Thierry; Krasnoselskikh, Vladimir; Bale, Stuart; Bonnell, John; Bowen, Trevor; Chen, Christopher; Froment, Clara; Goetz, Keith; Harvey, Peter; Jagarlamudi, Vamsee; Larosa, Andrea; MacDowall, Robert; Malaspina, David; Matthaeus, William; Pulupa, Marc; Velli, Marco; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5853

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Switchbacks in the Solar Magnetic Field: Their Evolution, Their Content, and Their Effects on the Plasma

Switchbacks (rotations of the magnetic field) are observed on the Parker Solar Probe. Their evolution, content, and plasma effects are studied in this paper. The solar wind does not receive a net acceleration from switchbacks that it encountered upstream of the observation point. The typical switchback rotation angle increased with radial distance. Significant Poynting fluxes existed inside, but not outside, switchbacks, and the dependence of the Poynting flux amplitude on the switchback radial location and rotation angle ...

Mozer, F.; Agapitov, O.; Bale, S.; Bonnell, J.; Case, T.; Chaston, C.; Curtis, D.; de Wit, Dudok; Goetz, K.; Goodrich, K.; Harvey, P.; Kasper, J.; Korreck, K.; Krasnoselskikh, V.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.; Whittlesey, P.; Wygant, J.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab7196

Parker Data Used; parker solar probe; Solar Probe Plus

Turbulence Transport Modeling and First Orbit Parker Solar Probe ( PSP ) Observations

The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding cor ...

Adhikari, L.; Zank, G.; Zhao, L.-L.; Kasper, J.; Korreck, K.; Stevens, M.; Case, A.; Whittlesey, P.; Larson, D.; Livi, R.; Klein, K.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5852

Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

WISPR Imaging of a Pristine CME

The Wide-field Imager for Solar Probe (WISPR) on board the Parker Solar Probe (PSP) observed a coronal mass ejection (CME) on 2018 November 1, the first day of the initial PSP encounter. The speed of the CME, approximately 200-300 km s-1 in the WISPR field of view, is typical of slow, streamer blowout CMEs. This event was also observed by the Large Angle and Spectrometric Coronagraph Experiment (LASCO) coronagraphs. WISPR and LASCO view remarkably similar structures that enable useful cross-comparison between t ...

Hess, Phillip; Rouillard, Alexis; Kouloumvakos, Athanasios; Liewer, Paulett; Zhang, Jie; Dhakal, Suman; Stenborg, Guillermo; Colaninno, Robin; Howard, Russell;

YEAR: 2020     DOI: 10.3847/1538-4365/ab4ff0

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter

In this paper, we present an analysis of the internal structure of a coronal mass ejection (CME) detected by in situ instruments on board the Parker Solar Probe (PSP) spacecraft during its first solar encounter. On 2018 November 11 at 23:53 UT, the FIELDS magnetometer measured an increase in strength of the magnetic field as well as a coherent change in the field direction. The SWEAP instrument simultaneously detected a low proton temperature and signatures of bidirectionality in the electron pitch angle distribution (PAD ...

Nieves-Chinchilla, Teresa; Szabo, Adam; Korreck, Kelly; Alzate, Nathalia; Balmaceda, Laura; Lavraud, Benoit; Paulson, Kristoff; Narock, Ayris; Wallace, Samantha; Jian, Lan; Luhmann, Janet; Morgan, Huw; Higginson, Aleida; Arge, Charles; Bale, Stuart; Case, Anthony; de Wit, Thierry; Giacalone, Joe; Goetz, Keith; Harvey, Peter; Jones-Melosky, Shaela; Kasper, J.; Larson, Davin; Livi, Roberto; McComas, David; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Raouafi, Nour; Schwadron, Nathan; Stevens, Michael; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.3847/1538-4365/ab61f5

Parker Data Used; parker solar probe; Solar Probe Plus

Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter

In this paper, we present an analysis of the internal structure of a coronal mass ejection (CME) detected by in situ instruments on board the Parker Solar Probe (PSP) spacecraft during its first solar encounter. On 2018 November 11 at 23:53 UT, the FIELDS magnetometer measured an increase in strength of the magnetic field as well as a coherent change in the field direction. The SWEAP instrument simultaneously detected a low proton temperature and signatures of bidirectionality in the electron pitch angle distribution (PAD ...

Nieves-Chinchilla, Teresa; Szabo, Adam; Korreck, Kelly; Alzate, Nathalia; Balmaceda, Laura; Lavraud, Benoit; Paulson, Kristoff; Narock, Ayris; Wallace, Samantha; Jian, Lan; Luhmann, Janet; Morgan, Huw; Higginson, Aleida; Arge, Charles; Bale, Stuart; Case, Anthony; de Wit, Thierry; Giacalone, Joe; Goetz, Keith; Harvey, Peter; Jones-Melosky, Shaela; Kasper, J.; Larson, Davin; Livi, Roberto; McComas, David; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Raouafi, Nour; Schwadron, Nathan; Stevens, Michael; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.3847/1538-4365/ab61f5

Parker Data Used; parker solar probe; Solar Probe Plus

Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter

In this paper, we present an analysis of the internal structure of a coronal mass ejection (CME) detected by in situ instruments on board the Parker Solar Probe (PSP) spacecraft during its first solar encounter. On 2018 November 11 at 23:53 UT, the FIELDS magnetometer measured an increase in strength of the magnetic field as well as a coherent change in the field direction. The SWEAP instrument simultaneously detected a low proton temperature and signatures of bidirectionality in the electron pitch angle distribution (PAD ...

Nieves-Chinchilla, Teresa; Szabo, Adam; Korreck, Kelly; Alzate, Nathalia; Balmaceda, Laura; Lavraud, Benoit; Paulson, Kristoff; Narock, Ayris; Wallace, Samantha; Jian, Lan; Luhmann, Janet; Morgan, Huw; Higginson, Aleida; Arge, Charles; Bale, Stuart; Case, Anthony; de Wit, Thierry; Giacalone, Joe; Goetz, Keith; Harvey, Peter; Jones-Melosky, Shaela; Kasper, J.; Larson, Davin; Livi, Roberto; McComas, David; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Raouafi, Nour; Schwadron, Nathan; Stevens, Michael; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.3847/1538-4365/ab61f5

Parker Data Used; parker solar probe; Solar Probe Plus

Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the Parker Solar Probe and Comparison with Helios

We discuss the solar wind electron temperatures Te as measured in the nascent solar wind by Parker Solar Probe during its first perihelion pass. The measurements have been obtained by fitting the high-frequency part of quasi-thermal noise spectra recorded by the Radio Frequency Spectrometer. In addition we compare these measurements with those obtained by the electrostatic analyzer discussed in Halekas et al. These first electron observations show an anticorrelation between Te and the wind bulk speed ...

Maksimovic, M.; Bale, S.; c, Ber\v; Bonnell, J.; Case, A.; de Wit, Dudok; Goetz, K.; Halekas, J.; Harvey, P.; Issautier, K.; Kasper, J.; Korreck, K.; Jagarlamudi, Krishna; Lahmiti, N.; Larson, D.; Lecacheux, A.; Livi, R.; MacDowall, R.; Malaspina, D.; c, M.; Meyer-Vernet, N.; Moncuquet, M.; Pulupa, M.; Salem, C.; Stevens, M.; ak, \v; Velli, M.; Whittlesey, P.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab61fc

Parker Data Used; parker solar probe; Solar Probe Plus

Clustering of Intermittent Magnetic and Flow Structures near Parker Solar Probe \textquoterights First Perihelion\textemdashA Partial-variance-of-increments Analysis

During the Parker Solar Probe\textquoterights (PSP) first perihelion pass, the spacecraft reached within a heliocentric distance of ̃37 R and observed numerous magnetic and flow structures characterized by sharp gradients. To better understand these intermittent structures in the young solar wind, an important property to examine is their degree of correlation in time and space. To this end, we use the well-tested partial variance of increments (PVI) technique to identify intermittent events in FIELDS and S ...

Chhiber, Rohit; Goldstein, M; Maruca, B.; Chasapis, A.; Matthaeus, W.; Ruffolo, D.; Bandyopadhyay, R.; Parashar, T.; Qudsi, R.; de Wit, Dudok; Bale, S.; Bonnell, J.; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Kasper, J.; Korreck, K.; Case, A.; Stevens, M.; Whittlesey, P.; Larson, D.; Livi, R.; Velli, M.; Raouafi, N.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab53d2

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus



  1      2      3