PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2021

Impact of Switchbacks on Turbulent Cascade and Energy Transfer Rate in the Inner Heliosphere

Recent Parker Solar Probe (PSP) observations of inner heliospheric plasma have shown an abundant presence of Alfv\ enic polarity reversal of the magnetic field, known as switchbacks. While their origin is still debated, their role in driving the solar wind turbulence has been suggested through analysis of the spectral properties of magnetic fluctuations. Here, we provide a complementary assessment of their role in the turbulent cascade. The validation of the third-order linear scaling of velocity and magnetic fluctuation ...

andez, Carlos; Sorriso-Valvo, Luca; Bandyopadhyay, Riddhi; Chasapis, Alexandros; asconez, Christian; Marino, Raffaele; Pezzi, Oreste;

Published by: \apjl      Published on: nov

YEAR: 2021     DOI: 10.3847/2041-8213/ac36d1

Parker Data Used; interplanetary turbulence; Solar wind; Magnetohydrodynamics; interplanetary magnetic fields; 830; 1534; 1964; 824

2017

Capabilities and Performance of the High-Energy Energetic-Particles Instrument for the Parker Solar Probe Mission

NASA\textquoterights Parker Solar Probe (PSP) spacecraft (formerly Solar Probe Plus) is scheduled for launch in July 2018 with a planned heliocentric orbit that will carry it on a series of close passes by the Sun with perihelion distances that eventually will get below 10 solar radii. Among other in-situ and imaging sensors, the PSP payload includes the two-instrument \textquotedblleftIntegrated Science Investigation of the Sun\textquotedblright suite, which will make coordinated measurements of energetic ions and electr ...

Wiedenbeck, M.; Angold, N.; Birdwell, B.; Burnham, J.; Christian, E.; Cohen, C.; Cook, W.; Cummings, A.; Davis, A.; Dirks, G.; Do, D.; Everett, d.; Goodwin, P.; Hanley, J.; Hernandez, L.; Kecman, B.; Klemic, J.; Labrador, A.; Leske, R.; Lopez, S.; Link, J.; McComas, D.; Mewaldt, R.; Miyasaka, H.; Nahory, B.; Rankin, J.; Riggans, G.; Rodriguez, B.; Rusert, M.; Shuman, S.; Simms, K.; Stone, E.; von Rosenvinge, T.; Weidner, S.; White, M.;

Published by:       Published on: 10/2017

YEAR: 2017     DOI: 10.22323/1.301.0016

Parker Data Used

Capabilities and performance of the high-energy energetic-particles instrument for the parker solar probe mission

NASA s Parker Solar Probe (PSP) spacecraft (formerly Solar Probe Plus) is scheduled for launch in July 2018 with a planned heliocentric orbit that will carry it on a series of close passes by the Sun with perihelion distances that eventually will get below 10 solar radii. Among other in-situ and imaging sensors, the PSP payload includes the two-instrument "Integrated Science Investigation of the Sun" suite, which will make coordinated measurements of energetic ions and electrons. The high-energy instrument (EPI-Hi), operatin ...

Wiedenbeck, M.E.; Angold, N.G.; Birdwell, B.; Burnham, J.A.; Christian, E.R.; Cohen, C.M.S.; Cook, W.R.; Crabill, R.M.; Cummings, A.C.; Davis, A.J.; Dirks, G.; Do, D.H.; Everett, D.T.; Goodwin, P.A.; Hanley, J.J.; Hernandez, L.; Kecman, B.; Klemic, J.; Labrador, A.W.; Leske, R.A.; Lopez, S.; Link, J.T.; McComas, D.J.; Mewaldt, R.A.; Miyasaka, H.; Nahory, B.W.; Rankin, J.S.; Riggans, G.; Rodriguez, B.; Rusert, M.D.; Shuman, S.A.; Simms, K.M.; Stone, E.C.; Von Rosenvinge, T.T.; Weidner, S.E.; White, M.L.;

Published by: Proceedings of Science      Published on:

YEAR: 2017     DOI:

cosmic rays; Cosmology; NASA; Orbits; Probes; Radioactivity; Parker Engineering



  1