PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2022

An analytical model for dust impact voltage signals and its application to STEREO/WAVES data

Context. Dust impacts have been observed using radio and wave instruments onboard spacecraft since the 1980s. Voltage waveforms show typical impulsive signals generated by dust grains. \ Aims: We aim at developing models of how signals are generated to be able to link observed electric signals to the physical properties of the impacting dust. To validate the model, we use the Time Domain Sampler (TDS) subsystem of the STEREO/WAVES instrument which generates high- cadence time series of voltage pulses for each monopole. \ Met ...

Babic, Rackovic; Zaslavsky, A.; Issautier, K.; Meyer-Vernet, N.; Onic, D.;

Published by: \aap      Published on: mar

YEAR: 2022     DOI: 10.1051/0004-6361/202142508

Solar wind; Sun: heliosphere; methods: analytical; methods: data analysis; meteorites; meteors; Meteoroids; Interplanetary medium

2021

Simulations of radio-wave anisotropic scattering to interpret type III radio burst data from Solar Orbiter, Parker Solar Probe, STEREO, and Wind

\ Aims: We use multi-spacecraft observations of individual type III radio bursts to calculate the directivity of the radio emission. We compare these data to the results of ray-tracing simulations of the radio-wave propagation and probe the plasma properties of the inner heliosphere. \ Methods: We used ray-tracing simulations of radio-wave propagation with anisotropic scattering on density inhomogeneities to study the directivity of radio emissions. Simultaneous observations of type III radio bursts by four widely separated ...

Musset, S.; Maksimovic, M.; Kontar, E.; Krupar, V.; Chrysaphi, N.; Bonnin, X.; Vecchio, A.; Cecconi, B.; Zaslavsky, A.; Issautier, K.; Bale, S.~D.; Pulupa, M.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140998

Parker Data Used; Sun: radio radiation; scattering; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

2019

Dust observations with antenna measurements and its prospects for observations with Parker Solar Probe and Solar Orbiter

The electric and magnetic field instrument suite FIELDS on board the NASA Parker Solar Probe and the radio and plasma waves instrument RPW on the ESA Solar Orbiter mission that explore the inner heliosphere are sensitive to signals generated by dust impacts. Dust impacts have been observed using electric field antennas on spacecraft since the 1980s and the method was recently used with a number of space missions to derive dust fluxes. Here, we consider the details of dust impacts, subsequent development of the impact gene ...

Mann, Ingrid; ak, Libor; Vaverka, Jakub; Antonsen, Tarjei; Fredriksen, \r; Issautier, Karine; Malaspina, David; Meyer-Vernet, Nicole; u, Ji\v; Sternovsky, Zoltan; Stude, Joan; Ye, Shengyi; Zaslavsky, Arnaud;

Published by: Annales Geophysicae      Published on: 12/2019

YEAR: 2019     DOI: 10.5194/angeo-37-1121-2019

Parker Data Used; parker solar probe; Solar Probe Plus

2017

A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun

The extreme temperatures and nonthermal nature of the solar corona and solar wind arise from an unidentified physical mechanism that preferentially heats certain ion species relative to others. Spectroscopic indicators of unequal temperatures commence within a fraction of a solar radius above the surface of the Sun, but the outer reach of this mechanism has yet to be determined. Here we present an empirical procedure for combining interplanetary solar wind measurements and a modeled energy equation including Coulomb relax ...

Kasper, J.; Klein, K.; Weber, T.; Maksimovic, M.; Zaslavsky, A.; Bale, S.; Maruca, B.; Stevens, M.; Case, A.;

Published by: The Astrophysical Journal      Published on: 11/2017

YEAR: 2017     DOI: 10.3847/1538-4357/aa84b1

acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; magnetic fields; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence



  1