Notice:
|
Found 7 entries in the Bibliography.
Showing entries from 1 through 7
2021 |
The scaling of the turbulent spectra provides a key measurement that allows us to discriminate between different theoretical predictions of turbulence. In the solar wind, this has driven a large number of studies dedicated to this issue using in situ data from various orbiting spacecraft. While a semblance of consensus exists regarding the scaling in the magnetohydrodynamic (MHD) and dispersive ranges, the precise scaling in the transition range and the actual physical mechanisms that control it remain open questions. Using ... . Y. Huang, S; Sahraoui, F.; Andrés, N.; Hadid, L.; Yuan, Z.; He, J.; Zhao, J.; Galtier, S.; Zhang, J.; Deng, X.; Jiang, K.; Yu, L.; Xu, S.; . Y. Xiong, Q; . Y. Wei, Y; de Wit, Dudok; Bale, S.; Kasper, J.; Published by: The Astrophysical Journal Published on: 03/2021 YEAR: 2021   DOI: 10.3847/2041-8213/abdaaf Parker Data Used; Solar wind; interplanetary turbulence; Solar coronal heating; 1534; 830; 1989; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics |
The scaling of the turbulent spectra provides a key measurement that allows us to discriminate between different theoretical predictions of turbulence. In the solar wind, this has driven a large number of studies dedicated to this issue using in situ data from various orbiting spacecraft. While a semblance of consensus exists regarding the scaling in the magnetohydrodynamic (MHD) and dispersive ranges, the precise scaling in the transition range and the actual physical mechanisms that control it remain open questions. Using ... . Y. Huang, S; Sahraoui, F.; Andrés, N.; Hadid, L.; Yuan, Z.; He, J.; Zhao, J.; Galtier, S.; Zhang, J.; Deng, X.; Jiang, K.; Yu, L.; Xu, S.; . Y. Xiong, Q; . Y. Wei, Y; de Wit, Dudok; Bale, S.; Kasper, J.; Published by: The Astrophysical Journal Published on: 03/2021 YEAR: 2021   DOI: 10.3847/2041-8213/abdaaf Parker Data Used; Solar wind; interplanetary turbulence; Solar coronal heating; 1534; 830; 1989; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics |
Characteristics of Magnetic Holes in the Solar Wind Revealed by Parker Solar Probe Yu, L.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Xiong, Q.~Y.; Xu, S.~B.; Wei, Y.~Y.; Zhang, J.; Zhang, Z.~H.; Published by: \apj Published on: 02/2021 YEAR: 2021   DOI: 10.3847/1538-4357/abb9a8 Solar wind; Solar Physics; interplanetary magnetic fields; Solar magnetic fields; 1534; 1476; 824; 1503; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
Characteristics of Magnetic Holes in the Solar Wind Revealed by Parker Solar Probe Yu, L.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Xiong, Q.~Y.; Xu, S.~B.; Wei, Y.~Y.; Zhang, J.; Zhang, Z.~H.; Published by: \apj Published on: 02/2021 YEAR: 2021   DOI: 10.3847/1538-4357/abb9a8 Solar wind; Solar Physics; interplanetary magnetic fields; Solar magnetic fields; 1534; 1476; 824; 1503; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
2020 |
The nature of the plasma wave modes around the ion kinetic scales in highly Alfv\ enic slow solar wind turbulence is investigated using data from the NASA\textquoterights Parker Solar Probe taken in the inner heliosphere, at 0.18 au from the Sun. The joint distribution of the normalized reduced magnetic helicity σm (θRB, τ) is obtained, where θRB is the angle between the local mean magnetic field and the radial direction and τ is the temporal scale. Two populations around ion scales a ... Huang, S; Zhang, J.; Sahraoui, F.; He, J.; Yuan, Z.; es, Andr\; Hadid, L.; Deng, X.; Jiang, K.; Yu, L.; Xiong, Q; Wei, Y; Xu, S.; Bale, S.; Kasper, J.; Published by: The Astrophysical Journal Published on: 07/2020 YEAR: 2020   DOI: 10.3847/2041-8213/ab9abb 1261; 1534; 1544; 1693; 1873; 23; 711; 824; 830; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus |
The nature of the plasma wave modes around the ion kinetic scales in highly Alfv\ enic slow solar wind turbulence is investigated using data from the NASA\textquoterights Parker Solar Probe taken in the inner heliosphere, at 0.18 au from the Sun. The joint distribution of the normalized reduced magnetic helicity σm (θRB, τ) is obtained, where θRB is the angle between the local mean magnetic field and the radial direction and τ is the temporal scale. Two populations around ion scales a ... Huang, S; Zhang, J.; Sahraoui, F.; He, J.; Yuan, Z.; es, Andr\; Hadid, L.; Deng, X.; Jiang, K.; Yu, L.; Xiong, Q; Wei, Y; Xu, S.; Bale, S.; Kasper, J.; Published by: The Astrophysical Journal Published on: 07/2020 YEAR: 2020   DOI: 10.3847/2041-8213/ab9abb 1261; 1534; 1544; 1693; 1873; 23; 711; 824; 830; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus |
2015 |
ION-SCALE TURBULENCE IN THE INNER HELIOSPHERE: RADIAL DEPENDENCE The evolution of the ion-scale plasma turbulence in the inner heliosphere is studied by associating the plasma parameters for hybrid-code turbulence simulations to the radial distance from the Sun via a Solar wind model based mapping procedure. Using a mapping based on a one-dimensional solar wind expansion model, the resulting ion-kinetic scale turbulence is related to the solar wind distance from the Sun. For this purpose the mapping is carried out for various values of ion beta that correspond to the heliocentric dista ... Comişel, H.; Motschmann, U.; üchner, J.; Narita, Y.; Nariyuki, Y.; Published by: The Astrophysical Journal Published on: 10/2015 YEAR: 2015   DOI: 10.1088/0004-637X/812/2/175 parker solar probe; plasmas; Solar Probe Plus; Solar wind; turbulence; waves |
1