Notice:
|
Found 29 entries in the Bibliography.
Showing entries from 1 through 29
2023 |
The Radial Distribution of Ion-scale Waves in the Inner Heliosphere Determining the mechanism responsible for plasma heating and particle acceleration is a fundamental problem in the study of the heliosphere. Due to efficient wave-particle interactions of ion- scale waves with charged particles, these waves are widely believed to be a major contributor to ion energization, and their contribution considerably depends on the wave occurrence rate. By analyzing the radial distribution of quasi- monochromatic ion-scale waves observed by the Parker Solar Probe, this work shows that the wave occurr ... Liu, Wen; Zhao, Jinsong; Wang, Tieyan; Dong, Xiangcheng; Kasper, Justin; Bale, Stuart; Shi, Chen; Wu, Dejin; Published by: \apj Published on: jul YEAR: 2023   DOI: 10.3847/1538-4357/acd53b Parker Data Used; Plasma physics; Space plasmas; Solar wind; 2089; 1544; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
The supersonic solar wind, first predicted by Parker and then observed by Mariners, extends to form a heliosphere around the Sun. The energy supply from the energy containing range, the energy cascade though the inertial range, and the eventual energy dissipation are three basic processes of the energy transfer in the solar wind and have been studied for a long time. However, some basic issues remain to be discovered. Here, we review the recent progress in the mechanisms of energy transfer of the solar wind turbulence from t ... Wu, Honghong; Tu, Chuanyi; He, Jiansen; Wang, Xin; Yang, Liping; Published by: Physics of Plasmas Published on: feb YEAR: 2023   DOI: 10.1063/5.0121140 |
Intermittency of Magnetic Discontinuities in the Near-Sun Solar Wind Turbulence The intermittency domain is in the magnetohydrodynamic inertial range but just above the dissipation range and contains the intermittent structures that influence the spectral index. However, the nature of these structures is still under debate and how they affect the higher-order scaling behavior in the near-Sun solar wind turbulence remains to be investigated. Here we use the magnetic field data measured by Parker Solar Probe in the near-Sun solar wind. We identify the intermittency by partial variance of increments method ... Wu, Honghong; Huang, Shiyong; Wang, Xin; Yuan, Zhigang; He, Jiansen; Yang, Liping; Published by: \apjl Published on: apr YEAR: 2023   DOI: 10.3847/2041-8213/acca20 Parker Data Used; Solar wind; interplanetary turbulence; Magnetohydrodynamics; Heliosphere; 1534; 830; 1964; 711 |
Scaling Anisotropy with Stationary Background Field in Near-Sun Solar Wind Turbulence The scaling of magnetic fluctuations provides crucial information for the understanding of solar wind turbulence. However, the observed magnetic fluctuations contain not only turbulence but also magnetic structures, leading to the violation of time stationarity. This violation would conceal the true scaling and influence the determination of the sampling angle with respect to the local background magnetic field. Here, to investigate scaling anisotropy, we utilize a simple but effective criterion \ensuremath\phi < 10\textdegr ... Wu, Honghong; He, Jiansen; Huang, Shiyong; Yang, Liping; Wang, Xin; Yuan, Zhigang; Published by: \apj Published on: apr YEAR: 2023   DOI: 10.3847/1538-4357/acc45d Parker Data Used; Solar wind; interplanetary turbulence; magnetic fields; 1534; 830; 994; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
2022 |
Cross-scale Correlations in Imbalanced Solar Wind Turbulence: Parker Solar Probe Observations Zhao, G.~Q.; Meyrand, R.; Feng, H.~Q.; Wu, D.~J.; Kasper, J.~C.; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac9380 Parker Data Used; Solar wind; interplanetary turbulence; Solar coronal heating; Space plasmas; Plasma physics; 1534; 830; 1989; 1544; 2089 |
Amiri, Mandana; Bandura, Kevin; Boskovic, Anja; Cliche, Jean-Fran\ccois; Deng, Meiling; Dobbs, Matt; Fandino, Mateus; Foreman, Simon; Halpern, Mark; Hill, Alex; Hinshaw, Gary; Höfer, Carolin; Kania, Joseph; Landecker, T.~L.; MacEachern, Joshua; Masui, Kiyoshi; Mena-Parra, Juan; Newburgh, Laura; Ordog, Anna; Pinsonneault-Marotte, Tristan; Polzin, Ava; Reda, Alex; Shaw, Richard; Siegel, Seth; Singh, Saurabh; Vanderlinde, Keith; Wang, Haochen; Willis, James; Wulf, Dallas; Collaboration, CHIME; Published by: \apj Published on: jun YEAR: 2022   DOI: 10.3847/1538-4357/ac6b9f Parker Data Used; Radio telescopes; Interferometers; Calibration; Quiet Sun; 1360; 805; 2179; 1322; Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Cosmology and Nongalactic Astrophysics |
The cutoff frequency is an important characteristic parameter of type III radio bursts. Employing the radio data of the Parker Solar Probe (PSP) in the encounter phases of its first five orbits, our previous work revealed that the maximum probability distribution of the cutoff frequency f $_ lo $ (\raisebox-0.5ex\textasciitilde680 kHz) is remarkably higher than that based on Ulysses and WIND (\raisebox-0.5ex\textasciitilde100 kHz) investigated by Leblanc et al. and Dulk et al. However, the main influencing factor of the disc ... Ma, Bing; Chen, Ling; Wu, Dejin; Pulupa, Marc; Bale, Stuart; Published by: \apjl Published on: jun YEAR: 2022   DOI: 10.3847/2041-8213/ac7525 Parker Data Used; Galaxy dynamics; Interplanetary physics; 591; 827 |
Based on the Parker Solar Probe mission, this paper presents the observations of two correlations in solar wind turbulence near the Sun for the first time, demonstrating the clear existence of the following two correlations. One is positive correlation between the proton temperature and turbulent magnetic energy density. The other is negative correlation between the spectral index and magnetic helicity. It is found that the former correlation has a maximum correlation coefficient (CC) at the wavenumber k \ensuremath\rho $_ p ... Zhao, G.~Q.; Lin, Y.; Wang, X.~Y.; Feng, H.~Q.; Wu, D.~J.; Kasper, J.~C.; Published by: \apj Published on: jan YEAR: 2022   DOI: 10.3847/1538-4357/ac3747 |
Using the Parker Solar Probe measurements, this Letter reports two new types of multiband electrostatic waves in and near the heliospheric current sheet. They are classified into the f < f $_ce$ and f > f $_ce$ multiband electrostatic waves, in which most (or all) of the bands in the former type are lower than f $_ce$, and all of the bands in the latter type are higher than f $_ce$, where f and f $_ce$ denotes the wave frequency and the electron cyclotron frequency, respectively. This Letter also exhibits observational evide ... Shi, Chen; Zhao, Jinsong; Malaspina, David; Bale, Stuart; Dong, Xiangcheng; Wang, Tieyan; Wu, Dejin; Published by: \apjl Published on: feb YEAR: 2022   DOI: 10.3847/2041-8213/ac4d37 |
The von K\ arm\ an-Howarth equations give a starting basis for the classical turbulence theory. The formula for the magnetohydrodynamics von K\ arm\ an decay rate represents an energy source in many solar wind models with turbulence as the driver. However, it still lacks the radial trend comparison between the von K\ arm\ an decay rate, the energy supply rate, and the perpendicular heating rate based on direct observations of the solar wind. Here we carry out this kind of comparison for the first time using Parker Solar Prob ... Wu, Honghong; Tu, Chuanyi; He, Jiansen; Wang, Xin; Yang, Liping; Published by: \apj Published on: feb YEAR: 2022   DOI: 10.3847/1538-4357/ac4413 |
2021 |
An Interplanetary Type IIIb Radio Burst Observed by Parker Solar Probe and Its Emission Mechanism Type IIIb radio bursts were identified as a chain of quasi-periodic striae in dynamic spectra, drifting from high to low frequencies in a manner similar to type III bursts, which fine structures may provide a clue to a better understanding of emission mechanisms. The approaching observation of the Parker Solar Probe (PSP) spacecraft provides a new chance of probing type IIIb bursts in the vicinity of the Sun. In this Letter, combining the in situ measurement of PSP and the empirical model of solar atmospheres in open magneti ... Chen, Ling; Ma, Bing; Wu, Dejin; Zhao, Guoqing; Tang, Jianfei; Bale, Stuart; Published by: \apjl Published on: jul YEAR: 2021   DOI: 10.3847/2041-8213/ac0b43 Parker Data Used; Solar radio emission; Interplanetary physics; 1522; 827 |
The fluctuations observed in the slow solar wind at 1 au by the WIND spacecraft are shown by recent studies to consist of mainly magnetic-field directional turning and magnetic-velocity alignment structure (MVAS). How these structures are created has been a question because the nature of the fluctuations in the near-Sun region remains unknown. Here, we present an analysis of the measurements in the slow solar wind from 0.1-0.3 au by Parker Solar Probe during its first six orbits. We present the distributions in the $C_\mathr ... Wu, Honghong; Tu, Chuanyi; Wang, Xin; Yang, Liping; Published by: \apj Published on: dec YEAR: 2021   DOI: 10.3847/1538-4357/ac3331 |
Large Amplitude Switchback Turbulence: Possible Magnetic Velocity Alignment Structures Switchbacks are widely acknowledged phenomena observed by the Parker Solar Probe and appear to occur in patches. Previous studies focused on the fluctuations at the magnetic reversals. However, the nature of the fluctuations inside the switchbacks remains unknown. Here we utilize the magnetic field data and plasma data measured by the Parker Solar Probe in the first four encounters. We investigate the fluctuations in the switchback intervals of 100 s with $B_R 0$ at every instant and compare them to the fluctuations in the n ... Wu, Honghong; Tu, Chuanyi; Wang, Xin; Yang, Liping; Published by: The Astrophysical Journal Published on: 06/2021 YEAR: 2021   DOI: 10.3847/1538-4357/abec6c Parker Data Used; Solar wind; interplanetary turbulence; 1534; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
The low frequency cutoffs flo and the observed plasma frequency fp of 176 type III radio bursts are investigated in this paper. These events are observed by the Parker Solar Probe when it is in the encounter phase from the first to the fifth orbit. The result shows that the distribution of cutoffs flo is widely spread between 200 kHz and 1.6 MHz. While the plasma frequency fp at the spacecraft is between 50 and 250 kHz, which is almost all smaller than flo. The result al ... Ma, Bing; Chen, Ling; Wu, Dejin; Bale, Stuart; Published by: The Astrophysical Journal Published on: 05/2021 YEAR: 2021   DOI: 10.3847/2041-8213/abfb77 Interplanetary physics; Solar radio emission; 827; 1522; Parker Data Used |
Shi, Chen; Zhao, Jinsong; Huang, Jia; Wang, Tieyan; Wu, Dejin; Chen, Yu; Hu, Qiang; Kasper, Justin; Bale, Stuart; Published by: \apjl Published on: 02/2021 YEAR: 2021   DOI: 10.3847/2041-8213/abdd28 |
2020 |
Energy Supply for Heating the Slow Solar Wind Observed by Parker Solar Probe between 0.17 and 0.7 au Energy supply sources for the heating process in the slow solar wind remain unknown. The Parker Solar Probe (PSP) mission provides a good opportunity to study this issue. Recently, PSP observations have found that the slow solar wind experiences stronger heating inside 0.24 au. Here for the first time we measure in the slow solar wind the radial gradient of the low-frequency breaks on the magnetic trace power spectra and evaluate the associated energy supply rate. We find that the energy supply rate is consistent with the ob ... Wu, Honghong; Tu, Chuanyi; Wang, Xin; He, Jiansen; Yang, Liping; Published by: The Astrophysical Journal Published on: 11/2020 YEAR: 2020   DOI: 10.3847/2041-8213/abc5b6 Parker Data Used; Slow solar wind; interplanetary turbulence; Solar coronal heating |
Relating Streamer Flows to Density and Magnetic Structures at the Parker Solar Probe The physical mechanisms that produce the slow solar wind are still highly debated. Parker Solar Probe\textquoterights (PSP\textquoterights) second solar encounter provided a new opportunity to relate in situ measurements of the nascent slow solar wind with white-light images of streamer flows. We exploit data taken by the Solar and Heliospheric Observatory, the Solar TErrestrial RElations Observatory (STEREO), and the Wide Imager on Solar Probe to reveal for the first time a close link between imaged streamer flows and th ... Rouillard, Alexis; Kouloumvakos, Athanasios; Vourlidas, Angelos; Kasper, Justin; Bale, Stuart; Raouafi, Nour-Edine; Lavraud, Benoit; Howard, Russell; Stenborg, Guillermo; Stevens, Michael; Poirier, Nicolas; Davies, Jackie; Hess, Phillip; Higginson, Aleida; Lavarra, Michael; Viall, Nicholeen; Korreck, Kelly; Pinto, Rui; Griton, Lea; eville, Victor; Louarn, Philippe; Wu, Yihong; Dalmasse, K\; enot, Vincent; Case, Anthony; Whittlesey, Phyllis; Larson, Davin; Halekas, Jasper; Livi, Roberto; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, D.; Pulupa, M.; Bonnell, J.; de Witt, Dudok; Penou, Emmanuel; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab579a Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Solar Probe Plus |
2019 |
The Fluid-like and Kinetic Behavior of Kinetic Alfv\ en Turbulence in Space Plasma Kinetic Alfv\ en waves (KAWs) are the short-wavelength extension of the magnetohydrodynamics Alfv\ en-wave branch in the case of highly oblique propagation with respect to the background magnetic field. Observations of space plasma show that small-scale turbulence is mainly KAW-like. We apply two theoretical approaches, a collisional two-fluid theory and a collisionless linear kinetic theory, to obtain predictions for the KAW polarizations depending on\ β\ p\ (the ratio of the proton th ... Wu, Honghong; Verscharen, Daniel; Wicks, Robert; Chen, Christopher; He, Jiansen; Nicolaou, Georgios; Published by: The Astrophysical Journal Published on: 01/2019 YEAR: 2019   DOI: 10.3847/1538-4357/aaef77 magnetohydrodynamics: MHD; plasmas; solar-terrestrial relations; turbulence; waves; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
2017 |
Exploring the statistics of magnetic reconnection X-points in kinetic particle-in-cell turbulence Haggerty, C.~C.; Parashar, T.~N.; Matthaeus, W.~H.; Shay, M.~A.; Yang, Y.; Wan, M.; Wu, P.; Servidio, S.; Published by: Physics of Plasmas Published on: 10/2017 YEAR: 2017   DOI: 10.1063/1.5001722 |
Energy transfer channels and turbulence cascade in Vlasov-Maxwell turbulence Yang, Yan; Matthaeus, W.~H.; Parashar, T.~N.; Wu, P.; Wan, M.; Shi, Y.; Chen, S.; Roytershteyn, V.; Daughton, W.; Published by: \pre Published on: 06/2017 YEAR: 2017   DOI: 10.1103/PhysRevE.95.061201 |
2016 |
Turbulence and Proton-Electron Heating in Kinetic Plasma Matthaeus, William; Parashar, Tulasi; Wan, Minping; Wu, P.; Published by: \apjl Published on: 08/2016 YEAR: 2016   DOI: 10.3847/2041-8205/827/1/L7 Parker Data Used; galaxies: ISM; ISM: kinematics and dynamics; plasmas; solar─terrestrial relations; Solar wind; turbulence |
Intermittency, coherent structures and dissipation in plasma turbulence Wan, M.; Matthaeus, W.~H.; Roytershteyn, V.; Parashar, T.~N.; Wu, P.; Karimabadi, H.; Published by: Physics of Plasmas Published on: 04/2016 YEAR: 2016   DOI: 10.1063/1.4945631 |
2015 |
The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ... Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary; Published by: Space Science Reviews Published on: 10/2015 YEAR: 2015   DOI: 10.1007/s11214-015-0206-3 Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP |
Intermittent Dissipation and Heating in 3D Kinetic Plasma Turbulence Wan, M.; Matthaeus, W.~H.; Roytershteyn, V.; Karimabadi, H.; Parashar, T.; Wu, P.; Shay, M.; Published by: \prl Published on: 05/2015 YEAR: 2015   DOI: 10.1103/PhysRevLett.114.175002 Parker Data Used; 52.35.Ra; 94.05.-a; 96.50.Tf; plasma turbulence; space plasma physics; MHD waves; plasma waves turbulence |
2013 |
von K\ arm\ an Energy Decay and Heating of Protons and Electrons in a Kinetic Turbulent Plasma Wu, P.; Wan, M.; Matthaeus, W.~H.; Shay, M.~A.; Swisdak, M.; Published by: \prl Published on: 09/2013 YEAR: 2013   DOI: 10.1103/PhysRevLett.111.121105 Parker Data Used; 95.30.Qd; 94.05.Lk; 96.50.Ci; Magnetohydrodynamics and plasmas; turbulence; Solar wind plasma; sources of solar wind; Physics - Plasma Physics; Physics - Space Physics |
Intermittent Heating in Solar Wind and Kinetic Simulations Wu, P.; Perri, S.; Osman, K.; Wan, M.; Matthaeus, W.~H.; Shay, M.~A.; Goldstein, M.~L.; Karimabadi, H.; Chapman, S.; Published by: \apjl Published on: 02/2013 YEAR: 2013   DOI: 10.1088/2041-8205/763/2/L30 Parker Data Used; magnetohydrodynamics: MHD; Solar wind; Sun: corona; turbulence |
Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas Karimabadi, H.; Roytershteyn, V.; Wan, M.; Matthaeus, W.~H.; Daughton, W.; Wu, P.; Shay, M.; Loring, B.; Borovsky, J.; Leonardis, E.; Chapman, S.~C.; Nakamura, T.~K.~M.; Published by: Physics of Plasmas Published on: 01/2013 YEAR: 2013   DOI: 10.1063/1.4773205 Parker Data Used; astrophysical plasma; plasma Alfven waves; plasma kinetic theory; plasma simulation; plasma temperature; plasma transport processes; plasma turbulence; Solar wind; 52.35.Ra; 94.05.Lk; 94.05.Pt; 52.25.Dg; 52.25.Fi; 52.35.Bj; plasma turbulence; turbulence; Wave/wave wave/particle interactions; Plasma kinetic equations; Transport properties; Magnetohydrodynamic waves |
2012 |
Intermittent Dissipation at Kinetic Scales in Collisionless Plasma Turbulence Wan, M.; Matthaeus, W.~H.; Karimabadi, H.; Roytershteyn, V.; Shay, M.; Wu, P.; Daughton, W.; Loring, B.; Chapman, S.~C.; Published by: \prl Published on: 11/2012 YEAR: 2012   DOI: 10.1103/PhysRevLett.109.195001 Parker Data Used; 94.05.Lk; 52.50.-b; 95.30.Qd; 96.50.Ci; turbulence; Plasma production and heating; Magnetohydrodynamics and plasmas; Solar wind plasma; sources of solar wind |
A simple 3D plasma instrument with an electrically adjustable geometric factor for space research We report on the design and experimental verification of a novel charged particle detector and an energy spectrometer with variable geometric factor functionality. Charged particle populations in the inner heliosphere create fluxes that can vary over many orders of magnitude in flux intensity. Space missions that plan to observe plasma fluxes, for example when travelling close to the Sun or to a planetary magnetosphere, require rapid particle measurements over the full three-dimensional velocity distribution. Traditionall ... Rohner, U; Saul, L; Wurz, P; Allegrini, F; Scheer, J; McComas, D; Published by: Measurement Science and Technology Published on: 02/2012 YEAR: 2012   DOI: 10.1088/0957-0233/23/2/025901 |
1