PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 7 entries in the Bibliography.


Showing entries from 1 through 7


2020

The Solar Probe Cup on the Parker Solar Probe

Solar Probe Cup (SPC) is a Faraday cup instrument on board NASA\textquoterights Parker Solar Probe (PSP) spacecraft designed to make rapid measurements of thermal coronal and solar wind plasma. The spacecraft is in a heliocentric orbit that takes it closer to the Sun than any previous spacecraft, allowing measurements to be made where the coronal and solar wind plasma is being heated and accelerated. The SPC instrument was designed to be pointed directly at the Sun at all times, allowing the solar wind (which is flowing p ...

Case, A.; Kasper, Justin; Stevens, Michael; Korreck, Kelly; Paulson, Kristoff; Daigneau, Peter; Caldwell, Dave; Freeman, Mark; Henry, Thayne; Klingensmith, Brianna; Bookbinder, J.; Robinson, Miles; Berg, Peter; Tiu, Chris; Wright, K.; Reinhart, Matthew; Curtis, David; Ludlam, Michael; Larson, Davin; Whittlesey, Phyllis; Livi, Roberto; Klein, Kristopher; c, Mihailo;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5a7b

Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

2019

Alfv\ enic velocity spikes and rotational flows in the near-Sun solar wind

Kasper, J.~C.; Bale, S.~D.; Belcher, J.~W.; Berthomier, M.; Case, A.~W.; Chandran, B.~D.~G.; Curtis, D.~W.; Gallagher, D.; Gary, S.~P.; Golub, L.; Halekas, J.~S.; Ho, G.~C.; Horbury, T.~S.; Hu, Q.; Huang, J.; Klein, K.~G.; Korreck, K.~E.; Larson, D.~E.; Livi, R.; Maruca, B.; Lavraud, B.; Louarn, P.; Maksimovic, M.; Martinovic, M.; McGinnis, D.; Pogorelov, N.~V.; Richardson, J.~D.; Skoug, R.~M.; Steinberg, J.~T.; Stevens, M.~L.; Szabo, A.; Velli, M.; Whittlesey, P.~L.; Wright, K.~H.; Zank, G.~P.; MacDowall, R.~J.; McComas, D.~J.; McNutt, R.~L.; Pulupa, M.; Raouafi, N.~E.; Schwadron, N.~A.;

Published by: \nat      Published on: 12/2019

YEAR: 2019     DOI: 10.1038/s41586-019-1813-z

Parker Data Used

2016

Modification of Velocity Power Spectra by Thermal Plasma Instrumentation

The upcoming Solar Probe Plus mission (Launch 2018) will launch with the newest and fastest space plasma instrumentation to date. The Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, which measures thermal plasma, will make measurements faster than the local gyro-frequency and proton plasma frequency. By developing an end-to-end computer model of a SWEAP instrument, this work explores the specific instrumental effects of thermal space plasma measurement, particularly in the reproduction of velocity power s ...

Whittlesey, P.; Zank, G.; Cirtain, J.; Wright, K.; Case, A.; Kasper, J.;

Published by:       Published on:

YEAR: 2016     DOI: 10.1088/1742-6596/767/1/012026

Parker Data Used

2015

Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ...

Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary;

Published by: Space Science Reviews      Published on: 10/2015

YEAR: 2015     DOI: 10.1007/s11214-015-0206-3

Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP

2013

AIP Conference ProceedingsDesigning a sun-pointing Faraday cup for solar probe plus

The NASA Solar Probe Plus (SPP) mission will be the first spacecraft to pass through the sub-Alfv\ enic solar corona. The objectives of the mission are to trace the flow of energy that heats and accelerates the solar corona and solar wind, to determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind, and to explore mechanisms that accelerate and transport energetic particles. The Solar Wind Electrons, Alphas, and Protons (SWEAP) Investigation instrument suite on SPP will measu ...

Case, A.; Kasper, J.; Daigneau, P.; Caldwell, D.; Freeman, M.; Gauron, T.; Maruca, B.; Bookbinder, J.; Korreck, K.; Cirtain, J.; Effinger, M.; Halekas, J.; Larson, D.; Lazarus, A.; Stevens, M.; Taylor, E.; Wright, K.;

Published by:       Published on: 01/2013

YEAR: 2013     DOI: 10.1063/1.4811083

Parker Data Used

Technology development for the solar probe plus faraday cup

The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP s Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly ...

Freeman, Mark; Kasper, Justin; Case, Anthony; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Etienne; Balat-Pichelin, Marianne; Wright, Kenneth;

Published by: Proceedings of SPIE - The International Society for Optical Engineering      Published on:

YEAR: 2013     DOI:

plasmas; Solar wind; Parker Engineering

Technology development for the Solar Probe Plus Faraday Cup

The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP s Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly ...

Freeman, Mark; Kasper, Justin; Case, Anthony; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Etienne; Balat-Pichelin, Marianne; Wright, Kenneth;

Published by:       Published on:

YEAR: 2013     DOI: 10.1117/12.2024983

Parker Data Used



  1