PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2022

CMEs and SEPs During November-December 2020: A Challenge for Real-Time Space Weather Forecasting

Predictions of coronal mass ejections (CMEs) and solar energetic particles (SEPs) are a central issue in space weather forecasting. In recent years, interest in space weather predictions has expanded to include impacts at other planets beyond Earth as well as spacecraft scattered throughout the heliosphere. In this sense, the scope of space weather science now encompasses the whole heliospheric system, and multipoint measurements of solar transients can provide useful insights and validations for prediction models. In this w ...

Palmerio, Erika; Lee, Christina; Mays, Leila; Luhmann, Janet; Lario, David; anchez-Cano, Beatriz; Richardson, Ian; Vainio, Rami; Stevens, Michael; Cohen, Christina; Steinvall, Konrad; Möstl, Christian; Weiss, Andreas; Nieves-Chinchilla, Teresa; Li, Yan; Larson, Davin; Heyner, Daniel; Bale, Stuart; Galvin, Antoinette; Holmström, Mats; Khotyaintsev, Yuri; Maksimovic, Milan; Mitrofanov, Igor;

Published by: Space Weather      Published on: may

YEAR: 2022     DOI: 10.1029/2021SW002993

Parker Data Used; coronal mass ejections; Solar energetic particles; space weather forecasts; MHD models; Inner heliosphere; Solar wind; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Physics - Space Physics

Multipoint Interplanetary Coronal Mass Ejections Observed with Solar Orbiter, BepiColombo, Parker Solar Probe, Wind, and STEREO-A

We report the result of the first search for multipoint in situ and imaging observations of interplanetary coronal mass ejections (ICMEs) starting with the first Solar Orbiter (SolO) data in 2020 April-2021 April. A data exploration analysis is performed including visualizations of the magnetic-field and plasma observations made by the five spacecraft SolO, BepiColombo, Parker Solar Probe (PSP), Wind, and STEREO-A, in connection with coronagraph and heliospheric imaging observations from STEREO-A/SECCHI and SOHO/LASCO. We id ...

Möstl, Christian; Weiss, Andreas; Reiss, Martin; Amerstorfer, Tanja; Bailey, Rachel; Hinterreiter, Jürgen; Bauer, Maike; Barnes, David; Davies, Jackie; Harrison, Richard; von Forstner, Johan; Davies, Emma; Heyner, Daniel; Horbury, Tim; Bale, Stuart;

Published by: \apjl      Published on: jan

YEAR: 2022     DOI: 10.3847/2041-8213/ac42d0

Parker Data Used; 310; 1526; 1534; 1476; 827; 824; 829; 711; 2037; 1472; 1528; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

2021

Study of two interacting interplanetary coronal mass ejections encountered by Solar Orbiter during its first perihelion passage. Observations and modeling

Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. \ Aims: This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7\ensuremath-8, 2020, from both an observational and a modeli ...

Telloni, D.; Scolini, C.; Möstl, C.; Zank, G.~P.; Zhao, L.; Weiss, A.~J.; Reiss, M.~A.; Laker, R.; Perrone, D.; Khotyaintsev, Y.; Steinvall, K.; Sorriso-Valvo, L.; Horbury, T.~S.; Wimmer-Schweingruber, R.~F.; Bruno, R.; Amicis, R.; De Marco, R.; Jagarlamudi, V.~K.; Carbone, F.; Marino, R.; Stangalini, M.; Nakanotani, M.; Adhikari, L.; Liang, H.; Woodham, L.~D.; Davies, E.~E.; Hietala, H.; Perri, S.; omez-Herrero, R.; iguez-Pacheco, Rodr\; Antonucci, E.; Romoli, M.; Fineschi, S.; Maksimovic, M.; Sou\vcek, J.; Chust, T.; Kretzschmar, M.; Vecchio, A.; Müller, D.; Zouganelis, I.; Winslow, R.~M.; Giordano, S.; Mancuso, S.; Susino, R.; Ivanovski, S.~L.; Messerotti, M.; Brien, H.; Evans, V.; Angelini, V.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140648

Parker Data Used; magnetohydrodynamics (MHD); Sun: coronal mass ejections (CMEs); Sun: evolution; Sun: heliosphere; Solar wind; solar-terrestrial relations

Analysis of Coronal Mass Ejection Flux Rope Signatures Using 3DCORE and Approximate Bayesian Computation

We present a major update to the 3D coronal rope ejection (3DCORE) technique for modeling coronal mass ejection flux ropes in conjunction with an approximate Bayesian computation (ABC) algorithm that is used for fitting the model to in situ magnetic field measurements. The model assumes an empirically motivated torus-like flux rope structure that expands self-similarly within the heliosphere, is influenced by a simplified interaction with the solar wind environment, and carries along an embedded analytical magnetic field. Th ...

Weiss, Andreas; Moestl, Christian; Amerstorfer, Tanja; Bailey, Rachel; Reiss, Martin; Hinterreiter, Juergen; Amerstorfer, Ute; Bauer, Maike;

Published by: ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES      Published on: 01/2021

YEAR: 2021     DOI: 10.3847/1538-4365/abc9bd

Parker Data Used

2020

Prediction of the In Situ Coronal Mass Ejection Rate for Solar Cycle 25: Implications for Parker Solar Probe In Situ Observations

The Parker Solar Probe (PSP) and Solar Orbiter missions are designed to make groundbreaking observations of the Sun and interplanetary space within this decade. We show that a particularly interesting in situ observation of an interplanetary coronal mass ejection (ICME) by PSP may arise during close solar flybys (<0.1 au). During these times, the same magnetic flux rope inside an ICME could be observed in situ by PSP twice, by impacting its frontal part as well as its leg. Investigating the odds of this situation, we forecas ...

Möstl, Christian; Weiss, Andreas; Bailey, Rachel; Reiss, Martin; Amerstorfer, Tanja; Hinterreiter, Jürgen; Bauer, Maike; McIntosh, Scott; Lugaz, No\; Stansby, David;

Published by: The Astrophysical Journal      Published on: 11/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb9a1

Solar coronal mass ejection; Solar storm; Ejecta; space weather; Solar system; Solar wind; Solar Physics; interplanetary magnetic fields; Solar magnetic fields



  1