Notice:
|
Found 47 entries in the Bibliography.
Showing entries from 1 through 47
2022 |
Exact laws for evaluating cascade rates, tracing back to the Kolmogorov 4/5 law, have been extended to many systems of interest including magnetohydrodynamics (MHD), and compressible flows of the magnetofluid and ordinary fluid types. It is understood that implementations may be limited by the quantity of available data and by the lack of turbulence symmetry. Assessment of the accuracy and feasibility of such third-order (or Yaglom) relations is most effectively accomplished by examining the von K\ arm\ an-Howarth equati ... Wang, Yanwen; Chhiber, Rohit; Adhikari, Subash; Yang, Yan; Bandyopadhyay, Riddhi; Shay, Michael; Oughton, Sean; Matthaeus, William; Cuesta, Manuel; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac8f90 Parker Data Used; interplanetary turbulence; Space plasmas; Plasma physics; Magnetohydrodynamics; Magnetohydrodynamical simulations; 830; 1544; 2089; 1964; 1966; Physics - Space Physics; Physics - Fluid Dynamics; Physics - Plasma Physics |
Higher-order Turbulence Statistics in the Sub-Alfv\ enic Solar Wind Observed by Parker Solar Probe Parker Solar Probe has been the first spacecraft to enter the deep corona below the Alfv\ en critical point. Here we examine the higher-order statistical properties of magnetic-field fluctuations in the sub-Alfv\ enic solar wind and compare the results with the neighboring super-Alfv\ enic region. The intermittency and multifractal properties are analyzed by inspecting the probability density functions, the scale- dependent kurtosis, and fractal spectrum of magnetic-field fluctuations. It is found that the magnetic-field flu ... Zhang, J.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Xu, S.~B.; Bandyopadhyay, R.; Wei, Y.~Y.; Xiong, Q.~Y.; Wang, Z.; Yu, L.; Lin, R.~T.; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac8c34 Parker Data Used; Solar wind; interplanetary turbulence; 1534; 830 |
Ion Kinetics of Plasma Flows: Earth s Magnetosheath versus Solar Wind Revealing the formation, dynamics, and contribution to plasma heating of magnetic field fluctuations in the solar wind is an important task for heliospheric physics and for a general plasma turbulence theory. Spacecraft observations in the solar wind are limited to spatially localized measurements, so that the evolution of fluctuation properties with solar wind propagation is mostly studied via statistical analyses of data sets collected by different spacecraft at various radial distances from the Sun. In this study we inves ... Artemyev, A.~V.; Shi, C.; Lin, Y.; Nishimura, Y.; Gonzalez, C.; Verniero, J.; Wang, X.; Velli, M.; Tenerani, A.; Sioulas, N.; Published by: \apj Published on: nov YEAR: 2022   DOI: 10.3847/1538-4357/ac96e4 Parker Data Used; interplanetary turbulence; Solar wind; 830; 1534 |
Many magnetic field switchbacks were detected by the Parker Solar Probe and their origin remains a puzzle. We did a superposed epoch analysis (SEA) to investigate the plasma characteristics in the vicinity of switchbacks and their radial evolution. SEA is good way to get the statistical average features of certain types of events that have obvious boundaries and different durations. For 55 events ranging from 1 to 30 min, the SEA results show that a small parcel of plasma is piling up in front of the reversed field, and ... Liu, Ruoyan; Liu, Yong; Huang, Jia; Huang, Zhaohui; Klecker, Berndt; Wang, Chi; Published by: Journal of Geophysical Research (Space Physics) Published on: may YEAR: 2022   DOI: 10.1029/2022JA030382 |
The S-shaped magnetic structure in the solar wind formed by the twisting of magnetic field lines is called a switchback, whose main characteristics are the reversal of the magnetic field and the significant increase in the solar wind radial velocity. We identify 242 switchbacks during the first two encounters of Parker Solar Probe. Statistics methods are applied to analyze the distribution and the rotation angle and direction of the magnetic field rotation of the switchbacks. The diameter of switchbacks is estimated with a m ... Meng, Ming-Ming; Liu, Ying; Chen, Chong; Wang, Rui; Published by: Research in Astronomy and Astrophysics Published on: mar YEAR: 2022   DOI: 10.1088/1674-4527/ac49e4 Parker Data Used; ISM: magnetic fields; methods: statistical; (Sun:) solar wind; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Categorizing MHD Discontinuities in the Inner Heliosphere by Utilizing the PSP Mission The interplanetary discontinuities (IDs) have been widely observed in astrophysical and space plasmas, while their characteristics and evolutions within 0.3 AU are still unclear due to the limitation of spacecraft orbits in previous missions. Here, we report three ID events, including a rotational discontinuity (RD), a tangential discontinuity (TD), and a suspected contact discontinuity (CD), detected by the Parker Solar Probe in a previously unexplored region of the heliosphere as close to the Sun as 0.13 AU. By the combina ... Liu, Y.~Y.; Fu, H.~S.; Cao, J.~B.; Yu, Y.; Liu, C.~M.; Wang, Z.; Guo, Z.~Z.; He, R.~J.; Published by: Journal of Geophysical Research (Space Physics) Published on: mar YEAR: 2022   DOI: 10.1029/2021JA029983 |
PSP Observations of a Slow Shock Pair Bounding a Large-Scale Plasmoid/Macro Magnetic Hole Slow shocks are introduced to be the main dissipation sites in Petschek reconnection model, but they are seldom observed in interplanetary space. We report a slow shock pair bounding a plasmoid/macro magnetic hole observed by Parker Solar Probe. The jump conditions across the shocks are examined and confirmed to satisfy the Rankine-Hugoniot relations. The flow speed in the preshock and postshock regions of both shocks match up with the characteristics of slow shocks. The slow shock pair is suggested to be a part of a curved ... Zhou, Zilu; Xu, Xiaojun; Zuo, Pingbing; Wang, Yi; Wang, Ludi; Ye, Yudong; Wang, Ming; Chang, Qing; Wang, Xing; Luo, Lei; Published by: \grl Published on: mar YEAR: 2022   DOI: 10.1029/2021GL097564 Parker Data Used; slow shocks; magnetic reconnection; Solar wind; magnetic hole |
PSP Observations of a Slow Shock Pair Bounding a Large-Scale Plasmoid/Macro Magnetic Hole Slow shocks are introduced to be the main dissipation sites in Petschek reconnection model, but they are seldom observed in interplanetary space. We report a slow shock pair bounding a plasmoid/macro magnetic hole observed by Parker Solar Probe. The jump conditions across the shocks are examined and confirmed to satisfy the Rankine-Hugoniot relations. The flow speed in the preshock and postshock regions of both shocks match up with the characteristics of slow shocks. The slow shock pair is suggested to be a part of a curved ... Zhou, Zilu; Xu, Xiaojun; Zuo, Pingbing; Wang, Yi; Wang, Ludi; Ye, Yudong; Wang, Ming; Chang, Qing; Wang, Xing; Luo, Lei; Published by: \grl Published on: mar YEAR: 2022   DOI: 10.1029/2021GL097564 Parker Data Used; slow shocks; magnetic reconnection; Solar wind; magnetic hole |
PSP Observations of a Slow Shock Pair Bounding a Large-Scale Plasmoid/Macro Magnetic Hole Slow shocks are introduced to be the main dissipation sites in Petschek reconnection model, but they are seldom observed in interplanetary space. We report a slow shock pair bounding a plasmoid/macro magnetic hole observed by Parker Solar Probe. The jump conditions across the shocks are examined and confirmed to satisfy the Rankine-Hugoniot relations. The flow speed in the preshock and postshock regions of both shocks match up with the characteristics of slow shocks. The slow shock pair is suggested to be a part of a curved ... Zhou, Zilu; Xu, Xiaojun; Zuo, Pingbing; Wang, Yi; Wang, Ludi; Ye, Yudong; Wang, Ming; Chang, Qing; Wang, Xing; Luo, Lei; Published by: \grl Published on: mar YEAR: 2022   DOI: 10.1029/2021GL097564 Parker Data Used; slow shocks; magnetic reconnection; Solar wind; magnetic hole |
PSP Observations of a Slow Shock Pair Bounding a Large-Scale Plasmoid/Macro Magnetic Hole Slow shocks are introduced to be the main dissipation sites in Petschek reconnection model, but they are seldom observed in interplanetary space. We report a slow shock pair bounding a plasmoid/macro magnetic hole observed by Parker Solar Probe. The jump conditions across the shocks are examined and confirmed to satisfy the Rankine-Hugoniot relations. The flow speed in the preshock and postshock regions of both shocks match up with the characteristics of slow shocks. The slow shock pair is suggested to be a part of a curved ... Zhou, Zilu; Xu, Xiaojun; Zuo, Pingbing; Wang, Yi; Wang, Ludi; Ye, Yudong; Wang, Ming; Chang, Qing; Wang, Xing; Luo, Lei; Published by: \grl Published on: mar YEAR: 2022   DOI: 10.1029/2021GL097564 Parker Data Used; slow shocks; magnetic reconnection; Solar wind; magnetic hole |
Amiri, Mandana; Bandura, Kevin; Boskovic, Anja; Cliche, Jean-Fran\ccois; Deng, Meiling; Dobbs, Matt; Fandino, Mateus; Foreman, Simon; Halpern, Mark; Hill, Alex; Hinshaw, Gary; Höfer, Carolin; Kania, Joseph; Landecker, T.~L.; MacEachern, Joshua; Masui, Kiyoshi; Mena-Parra, Juan; Newburgh, Laura; Ordog, Anna; Pinsonneault-Marotte, Tristan; Polzin, Ava; Reda, Alex; Shaw, Richard; Siegel, Seth; Singh, Saurabh; Vanderlinde, Keith; Wang, Haochen; Willis, James; Wulf, Dallas; Collaboration, CHIME; Published by: \apj Published on: jun YEAR: 2022   DOI: 10.3847/1538-4357/ac6b9f Parker Data Used; Radio telescopes; Interferometers; Calibration; Quiet Sun; 1360; 805; 2179; 1322; Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Cosmology and Nongalactic Astrophysics |
The solar wind in the inner heliosphere has been observed by Parker Solar Probe (PSP) to exhibit abundant wave activities. The cyclotron wave modes responding to ions or electrons are among the most crucial wave components. However, their origin and evolution in the inner heliosphere close to the Sun remains a mystery. Specifically, it remains unknown whether it is an emitted signal from the solar atmosphere or an eigenmode growing locally in the heliosphere due to plasma instability. To address and resolve this controversy, ... He, Jiansen; Wang, Ying; Zhu, Xingyu; Duan, Die; Verscharen, Daniel; Zhao, Guoqing; Published by: \apj Published on: jul YEAR: 2022   DOI: 10.3847/1538-4357/ac6c8e Parker Data Used; Solar wind; interplanetary turbulence; 1534; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Based on the Parker Solar Probe mission, this paper presents the observations of two correlations in solar wind turbulence near the Sun for the first time, demonstrating the clear existence of the following two correlations. One is positive correlation between the proton temperature and turbulent magnetic energy density. The other is negative correlation between the spectral index and magnetic helicity. It is found that the former correlation has a maximum correlation coefficient (CC) at the wavenumber k \ensuremath\rho $_ p ... Zhao, G.~Q.; Lin, Y.; Wang, X.~Y.; Feng, H.~Q.; Wu, D.~J.; Kasper, J.~C.; Published by: \apj Published on: jan YEAR: 2022   DOI: 10.3847/1538-4357/ac3747 |
We utilize the data from the Parker Solar Probe mission at its first perihelion to investigate the three-dimensional (3D) anisotropies and scalings of solar wind turbulence for the total, perpendicular, and parallel magnetic-field fluctuations at kinetic scales in the inner heliosphere. By calculating the five-point second-order structure functions, we find that the three characteristic lengths of turbulence eddies for the total and the perpendicular magnetic-field fluctuations in the local reference frame $(\hatL_\perp ,\ha ... Zhang, J.; Huang, S.~Y.; He, J.~S.; Wang, T.~Y.; Yuan, Z.~G.; Deng, X.~H.; Jiang, K.; Wei, Y.~Y.; Xu, S.~B.; Xiong, Q.~Y.; Lin, R.~T.; Yu, L.; Published by: \apjl Published on: jan YEAR: 2022   DOI: 10.3847/2041-8213/ac4027 |
Using the Parker Solar Probe measurements, this Letter reports two new types of multiband electrostatic waves in and near the heliospheric current sheet. They are classified into the f < f $_ce$ and f > f $_ce$ multiband electrostatic waves, in which most (or all) of the bands in the former type are lower than f $_ce$, and all of the bands in the latter type are higher than f $_ce$, where f and f $_ce$ denotes the wave frequency and the electron cyclotron frequency, respectively. This Letter also exhibits observational evide ... Shi, Chen; Zhao, Jinsong; Malaspina, David; Bale, Stuart; Dong, Xiangcheng; Wang, Tieyan; Wu, Dejin; Published by: \apjl Published on: feb YEAR: 2022   DOI: 10.3847/2041-8213/ac4d37 |
The von K\ arm\ an-Howarth equations give a starting basis for the classical turbulence theory. The formula for the magnetohydrodynamics von K\ arm\ an decay rate represents an energy source in many solar wind models with turbulence as the driver. However, it still lacks the radial trend comparison between the von K\ arm\ an decay rate, the energy supply rate, and the perpendicular heating rate based on direct observations of the solar wind. Here we carry out this kind of comparison for the first time using Parker Solar Prob ... Wu, Honghong; Tu, Chuanyi; He, Jiansen; Wang, Xin; Yang, Liping; Published by: \apj Published on: feb YEAR: 2022   DOI: 10.3847/1538-4357/ac4413 |
Small-Scale Magnetic Holes in the Solar Wind Observed by Parker Solar Probe The small-scale magnetic hole (SSMH), characterized by magnetic field depression, is a structure with the size in the order of proton gyro-radius. SSMHs near the Earth or other planets have been widely observed in recent years. However, SSMHs in the solar wind near the Sun are rarely investigated due to mission constraints. In the present study, SSMHs in the pristine solar wind within a wide heliocentric distance range are analyzed based on the Parker Solar Probe (PSP) Mission measurements. A total of 2,416 SSMHs are success ... Yu, L.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Wei, Y.~Y.; Zhang, J.; Xu, S.~B.; Xiong, Q.~Y.; Wang, Z.; Lin, R.~T.; Li, Y.~J.; Wang, C.~M.; Song, G.~J.; Published by: Journal of Geophysical Research (Space Physics) Published on: aug YEAR: 2022   DOI: 10.1029/2022JA030505 Parker Data Used; Solar wind; small-scale magnetic hole; PSP |
Small-Scale Magnetic Holes in the Solar Wind Observed by Parker Solar Probe The small-scale magnetic hole (SSMH), characterized by magnetic field depression, is a structure with the size in the order of proton gyro-radius. SSMHs near the Earth or other planets have been widely observed in recent years. However, SSMHs in the solar wind near the Sun are rarely investigated due to mission constraints. In the present study, SSMHs in the pristine solar wind within a wide heliocentric distance range are analyzed based on the Parker Solar Probe (PSP) Mission measurements. A total of 2,416 SSMHs are success ... Yu, L.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Wei, Y.~Y.; Zhang, J.; Xu, S.~B.; Xiong, Q.~Y.; Wang, Z.; Lin, R.~T.; Li, Y.~J.; Wang, C.~M.; Song, G.~J.; Published by: Journal of Geophysical Research (Space Physics) Published on: aug YEAR: 2022   DOI: 10.1029/2022JA030505 Parker Data Used; Solar wind; small-scale magnetic hole; PSP |
Solar Chromospheric Network as a Source for Solar Wind Switchbacks Recent studies suggest that the magnetic switchbacks (SBs) detected by the Parker Solar Probe carry information on the scales of solar supergranulation (large scale) and granulation (medium scale). We test this claim using high-resolution H\ensuremath\alpha images obtained with the visible spectropolarimeters of the Goode Solar Telescope in Big Bear Solar Observatory. As possible solar sources, we count all the spicule-like features standing along the chromospheric networks near the coronal hole boundary visible in the H\ens ... Lee, Jeongwoo; Yurchyshyn, Vasyl; Wang, Haimin; Yang, Xu; Cao, Wenda; Oliveros, Juan; Published by: \apjl Published on: aug YEAR: 2022   DOI: 10.3847/2041-8213/ac86bf Parker Data Used; Solar magnetic fields; Solar chromosphere; Solar wind; interplanetary magnetic fields; 1503; 1479; 1534; 824 |
Using Single-view Observations of Cometary Plasma Tails to Infer Solar Wind Speed A comet plasma tail is a product of the interaction between the solar wind and the comet s coma, and has long been studied as a natural probe of the solar wind condition. We previously developed a method to derive the solar wind speed from dual-view observations of comet plasma tails. Here we improve the method to use single-view observations by assuming a radially propagating solar wind and apply it to two comets, C/2011 W3 (Lovejoy) and C/2012 S1 (ISON) observed by coronagraphs on board the Solar and Heliospheric Observato ... Cheng, Long; Wang, Yuming; Li, Xiaolei; Published by: \apj Published on: apr YEAR: 2022   DOI: 10.3847/1538-4357/ac5410 |
On the Conservation of Turbulence Energy in Turbulence Transport Models Zank et al. developed models describing the transport of low-frequency incompressible and nearly incompressible turbulence in inhomogeneous flows. The formalism was based on expressing the fluctuating variables in terms of the Elsässar variables and then taking moments subject to various closure hypotheses. The turbulence transport models are different according to whether the plasma beta regime is large, of order unity, or small. Here, we show explicitly that the three sets of turbulence transport models admit a conser ... Wang, B.; Zank, G.~P.; Adhikari, L.; Zhao, L.; Published by: \apj Published on: apr YEAR: 2022   DOI: 10.3847/1538-4357/ac596e Parker Data Used; Magnetohydrodynamics; interplanetary turbulence; 1964; 830; Physics - Plasma Physics; Astrophysics - High Energy Astrophysical Phenomena; Astrophysics - Solar and Stellar Astrophysics; Physics - Fluid Dynamics |
Using the Parker Solar Probe data taken in the inner heliosphere, we investigate the power and spatial anisotropy of magnetic field spectra at kinetic scales (i.e., around sub-ion scales) in solar wind turbulence in the inner heliosphere. We find that strong anisotropy of the magnetic spectra occurs at kinetic scales with the strongest power in the perpendicular direction with respect to the local magnetic field (forming an angle \ensuremath\theta $_B$ with the mean flow velocity). The spectral index of the magnetic spectra ... Huang, S.~Y.; Xu, S.~B.; Zhang, J.; Sahraoui, F.; es, Andr\; He, J.~S.; Yuan, Z.~G.; Deng, X.~H.; Jiang, K.; Wei, Y.~Y.; Xiong, Q.~Y.; Wang, Z.; Yu, L.; Lin, R.~T.; Published by: \apjl Published on: apr YEAR: 2022   DOI: 10.3847/2041-8213/ac5f02 Parker Data Used; Solar wind; interplanetary turbulence; Heliosphere; Space plasmas; 1534; 830; 711; 1544; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
2021 |
We report nonlinear wave-wave coupling related to whistler-mode or electron Bernstein waves in the near-Sun slow solar wind with Parker Solar Probe (PSP) data. Prominent plasma wave power enhancements usually exist near the electron gyrofrequency (f$_ce$), identified as electrostatic whistler-mode and electron Bernstein waves (Malaspina et al. 2020). We find that these plasma waves near f$_ce$ typically have a harmonic spectral structure and further classify them into three types identified by the characteristics of wave fre ... Ma, Jiuqi; Gao, Xinliang; Yang, Zhongwei; Tsurutani, Bruce; Liu, Mingzhe; Lu, Quanming; Wang, Shui; Published by: \apj Published on: sep YEAR: 2021   DOI: 10.3847/1538-4357/ac0ef4 |
The Spacecraft Interaction Plasma Software package (SPIS), a three dimension particle in cell (PIC) code, was used to model the Parker Solar Probe (PSP) spacecraft and FIELDS instrument and their interactions with the Solar wind. Our SPIS modeling relied on material properties of new spacecraft materials that we had obtained in previous work. The model was used to find the floating potentials of the spacecraft and FIELDS antennas at different distances from the Sun (from 1AU to 0.046AU). We find the following results: At gre ... Diaz-Aguado, M.~F.; Bonnell, J.~W.; Bale, S.~D.; Wang, J.; Gruntman, M.; Published by: Journal of Geophysical Research (Space Physics) Published on: may YEAR: 2021   DOI: 10.1029/2020JA028688 |
Solar Origin of Compressive Alfv\ enic Spikes/Kinks as Observed by Parker Solar Probe The solar wind is found by the Parker Solar Probe to be abundant with Alfv\ enic velocity spikes and magnetic field kinks. Temperature enhancement is another remarkable feature associated with the Alfv\ enic spikes. How the prototype of these coincident phenomena is generated intermittently in the source region is an important and wide-ranging subject. Here we propose a new model introducing guide-field discontinuity into the interchange magnetic reconnection between open funnels and closed loops with different magnetic heli ... He, Jiansen; Zhu, Xingyu; Yang, Liping; Hou, Chuanpeng; Duan, Die; Zhang, Lei; Wang, Ying; Published by: \apjl Published on: may YEAR: 2021   DOI: 10.3847/2041-8213/abf83d Parker Data Used; Solar wind; Alfven waves; Solar atmosphere; Solar magnetic reconnection; 1534; 23; 1477; 1504 |
Anisotropy of Solar Wind Turbulence in the Inner Heliosphere at Kinetic Scales: PSP Observations The anisotropy of solar wind turbulence is a critical issue in understanding the physics of energy transfer between scales and energy conversion between fields and particles in the heliosphere. Using the measurement of Parker Solar Probe (PSP), we present an observation of the anisotropy at kinetic scales in the slow, Alfv\ enic, solar wind in the inner heliosphere. The magnetic compressibility behaves as expected for kinetic Alfv\ enic turbulence below the ion scale. A steepened transition range is found between the inertia ... Duan, Die; He, Jiansen; Bowen, Trevor; Woodham, Lloyd; Wang, Tieyan; Chen, Christopher; Mallet, Alfred; Bale, Stuart; Published by: \apjl Published on: jul YEAR: 2021   DOI: 10.3847/2041-8213/ac07ac Parker Data Used; Solar wind; interplanetary turbulence; Alfven waves; 1534; 830; 23; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics |
The fluctuations observed in the slow solar wind at 1 au by the WIND spacecraft are shown by recent studies to consist of mainly magnetic-field directional turning and magnetic-velocity alignment structure (MVAS). How these structures are created has been a question because the nature of the fluctuations in the near-Sun region remains unknown. Here, we present an analysis of the measurements in the slow solar wind from 0.1-0.3 au by Parker Solar Probe during its first six orbits. We present the distributions in the $C_\mathr ... Wu, Honghong; Tu, Chuanyi; Wang, Xin; Yang, Liping; Published by: \apj Published on: dec YEAR: 2021   DOI: 10.3847/1538-4357/ac3331 |
We present a statistical analysis for the characteristics and spatial evolution of the interplanetary discontinuities (IDs) in the solar wind, from 0.13-0.9 au, by using the Parker Solar Probe measurements on Orbits 4 and 5. We collected 3948 IDs, including 2511 rotational discontinuities (RDs) and 557 tangential discontinuities (TDs), with the remnant unidentified. The statistical results show that (1) the ID occurrence rate decreases from 200 events per day at 0.13 au to 1 event per day at 0.9 au, following a spatial scali ... Liu, Y.~Y.; Fu, H.~S.; Cao, J.~B.; Liu, C.~M.; Wang, Z.; Guo, Z.~Z.; Xu, Y.; Bale, S.~D.; Kasper, J.~C.; Published by: \apj Published on: aug YEAR: 2021   DOI: 10.3847/1538-4357/ac06a1 Interplanetary discontinuities; Solar wind; interplanetary magnetic fields; Magnetohydrodynamics; 820; 1534; 824; 1964; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used |
Large Amplitude Switchback Turbulence: Possible Magnetic Velocity Alignment Structures Switchbacks are widely acknowledged phenomena observed by the Parker Solar Probe and appear to occur in patches. Previous studies focused on the fluctuations at the magnetic reversals. However, the nature of the fluctuations inside the switchbacks remains unknown. Here we utilize the magnetic field data and plasma data measured by the Parker Solar Probe in the first four encounters. We investigate the fluctuations in the switchback intervals of 100 s with $B_R 0$ at every instant and compare them to the fluctuations in the n ... Wu, Honghong; Tu, Chuanyi; Wang, Xin; Yang, Liping; Published by: The Astrophysical Journal Published on: 06/2021 YEAR: 2021   DOI: 10.3847/1538-4357/abec6c Parker Data Used; Solar wind; interplanetary turbulence; 1534; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
In-flight Calibration and Data Reduction for the WISPR Instrument On Board the PSP Mission We present the calibration status and data reduction methodology for the Wide Field Imager for Solar Probe (WISPR) on board the Parker Solar Probe (PSP) mission. In particular, we describe the process for converting a raw image, measured in digital numbers (DN), to a calibrated image, measured in mean solar brightness (MSB). We also discuss details of the on board image processing including bias removal, the linearity of the electronics, pointing, geometric distortion, and photometric calibration using stellar measurements, ... Hess, Phillip; Howard, Russell; Stenborg, Guillermo; Linton, Mark; Vourlidas, Angelos; Thernisien, Arnaud; Colaninno, Robin; Rich, Nathan; Wang, Dennis; Battams, Karl; Kuroda, Natsuha; Published by: Solar Physics Published on: 06/2021 YEAR: 2021   DOI: 10.1007/s11207-021-01847-9 |
This research shows Part II of the Spacecraft Interaction Plasma Software (SPIS) used to model the parker solar probe (PSP) FIELDS instrument and its interactions with the Solar Wind. Flight data were used to run the PSP model and compared with models using past predicted parameters. The effect of voltage biasing between the antenna, its shield, and the spacecraft on the current balance of each surface was investigated at first perihelion (0.16AU). The model data were reduced to I-V curves to find current saturations (analys ... Diaz-Aguado, M.; Bonnell, J.; Bale, S.; Wang, J.; Gruntman, M.; Published by: Journal of Geophysical Research (Space Physics) Published on: 05/2021 YEAR: 2021   DOI: 10.1029/2020JA028689 |
Shi, Chen; Zhao, Jinsong; Huang, Jia; Wang, Tieyan; Wu, Dejin; Chen, Yu; Hu, Qiang; Kasper, Justin; Bale, Stuart; Published by: \apjl Published on: 02/2021 YEAR: 2021   DOI: 10.3847/2041-8213/abdd28 |
2020 |
Energy Supply for Heating the Slow Solar Wind Observed by Parker Solar Probe between 0.17 and 0.7 au Energy supply sources for the heating process in the slow solar wind remain unknown. The Parker Solar Probe (PSP) mission provides a good opportunity to study this issue. Recently, PSP observations have found that the slow solar wind experiences stronger heating inside 0.24 au. Here for the first time we measure in the slow solar wind the radial gradient of the low-frequency breaks on the magnetic trace power spectra and evaluate the associated energy supply rate. We find that the energy supply rate is consistent with the ob ... Wu, Honghong; Tu, Chuanyi; Wang, Xin; He, Jiansen; Yang, Liping; Published by: The Astrophysical Journal Published on: 11/2020 YEAR: 2020   DOI: 10.3847/2041-8213/abc5b6 Parker Data Used; Slow solar wind; interplanetary turbulence; Solar coronal heating |
Using Stereoscopic Observations of Cometary Plasma Tails to Infer Solar Wind Speed Detection of the solar wind speed near the Sun is significant in understanding the heating and acceleration of the solar wind. Cometary plasma tails have long been used as natural probes for solar wind speed; previous solar wind speed estimates via plasma tails, however, were based on comet images from a single viewpoint, and the projection effect may influence the result. Using stereoscopic observations from the Solar Terrestrial Relations Observatory and the Solar and Heliospheric Observatory, we three-dimensionally rec ... Cheng, Long; Zhang, Quanhao; Wang, Yuming; Li, Xiaolei; Liu, Rui; Published by: The Astrophysical Journal Published on: 07/2020 YEAR: 2020   DOI: 10.3847/1538-4357/ab93b6 |
Raghav, Anil; Gaikwad, Sandesh; Wang, Yuming; Shaikh, Zubair; Mishra, Wageesh; Zao, Ake; Published by: \mnras Published on: 06/2020 YEAR: 2020   DOI: 10.1093/mnras/staa1189 Sun: coronal mass ejections; solar-terrestrial relations; Solar wind |
Electron Energy Partition across Interplanetary Shocks. III. Analysis Wilson, Lynn; Chen, Li-Jen; Wang, Shan; Schwartz, Steven; Turner, Drew; Stevens, Michael; Kasper, Justin; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart; Pulupa, Marc; Salem, Chadi; Goodrich, Katherine; Published by: \apj Published on: 04/2020 YEAR: 2020   DOI: 10.3847/1538-4357/ab7d39 Parker Data Used; 1534; 829; 310; 1997; 1544; 1261; 2089; 826; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
Morphological Reconstruction of a Small Transient Observed by Parker Solar Probe on 2018 November 5 On 2018 November 5, about 24 hr before the first close perihelion passage of Parker Solar Probe (PSP), a coronal mass ejection (CME) entered the field of view of the inner detector of the Wide-field Imager for Solar PRobe (WISPR) instrument on board PSP, with the northward component of its trajectory carrying the leading edge of the CME off the top edge of the detector about four hours after its first appearance. We connect this event to a very small jetlike transient observed from 1 au by coronagraphs on both the SOlar a ... Wood, Brian; Hess, Phillip; Howard, Russell; Stenborg, Guillermo; Wang, Yi-Ming; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab5219 Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
2019 |
Electron Energy Partition across Interplanetary Shocks. II. Statistics A statistical analysis of 15,210 electron velocity distribution function (VDF) fits, observed within \textpm2 hr of 52 interplanetary (IP) shocks by the Wind spacecraft near 1 au, is presented. This is the second in a three-part series on electron VDFs near IP shocks. The electron velocity moment statistics for the dense, low-energy core, tenuous, hot halo, and field-aligned beam/strahl are a statistically significant list of values illustrated with both histograms and tabular lists for reference and baselines in future w ... Wilson, Lynn; Chen, Li-Jen; Wang, Shan; Schwartz, Steven; Turner, Drew; Stevens, Michael; Kasper, Justin; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart; Pulupa, Marc; Salem, Chadi; Goodrich, Katherine; Published by: The Astrophysical Journal Supplement Series Published on: 12/2019 YEAR: 2019   DOI: 10.3847/1538-4365/ab5445 Astrophysics - Solar and Stellar Astrophysics; Interplanetary particle acceleration; Interplanetary shocks; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Plasma astrophysics; Plasma physics; Solar coronal mass ejection shocks; Solar coronal mass ejections; Solar Probe Plus; Solar wind; Space plasmas |
By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R 0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral configuration, which is usually simplified to an Archimedes spiral. Using magnetic field observations near Mercury, Venus, and Earth during solar maximum of Solar Cycle 24, we statistically surveyed the Parker spira ... Chang, Qing; Xu, Xiaojun; Xu, Qi; Zhong, Jun; Xu, Jiaying; Wang, Jing; Zhang, Tielong; Published by: The Astrophysical Journal Published on: 10/2019 YEAR: 2019   DOI: 10.3847/1538-4357/ab412a parker solar probe; planets and satellites: magnetic fields; Solar Probe Plus; Solar wind; Sun: activity; Sun: magnetic fields |
Electron Energy Partition across Interplanetary Shocks. I. Methodology and Data Product Wilson, Lynn; Chen, Li-Jen; Wang, Shan; Schwartz, Steven; Turner, Drew; Stevens, Michael; Kasper, Justin; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart; Pulupa, Marc; Salem, Chadi; Goodrich, Katherine; Published by: \apjs Published on: 07/2019 YEAR: 2019   DOI: 10.3847/1538-4365/ab22bd Parker Data Used; methods: numerical; methods: statistical; plasmas; shock waves; Solar wind; Sun: coronal mass ejections: CMEs; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
Quasi Thermal Noise Spectroscopy for Van Allen Probes Quasi thermal fluctuations in the Langmuir/upper-hybrid frequency range are pervasively observed in space plasmas including the radiation belt and the ring current region of inner magnetosphere as well as the solar wind. The quasi thermal noise spectroscopy may be employed in order to determine the electron density and temperature as well as to diagnose the properties of energetic electrons when direct measurements are not available. However, when employing the technique, one must carefully take the spacecraft orientation ... Yoon, Peter; Hwang, Junga; Kim, Hyangpyo; Seough, Jungjoon; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2019JA026460 (n + 1/2)fce; antenna geometry; parker solar probe; quasi-thermal; radiation belt; Solar Probe Plus; upper hybrid; Van Allen Probes |
2018 |
Electromagnetic Thermal Noise in Upper-Hybrid Frequency Range The inner magnetosphere including the radiation belt and ring current environment is replete with high-frequency fluctuations with peak intensity occurring near upper-hybrid frequency and/or multiple harmonic electron cyclotron frequencies above and below the upper-hybrid frequency. Past and contemporary spacecraft missions, including the Van Allen Probes, were designed to detect the electric field spectrum only for these high-frequency fluctuations. Making use of the recently formulated generalized theory of electromagne ... Yoon, Peter; Hwang, Junga; opez, Rodrigo; Kim, Sunjung; Lee, Jaejin; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2018 YEAR: 2018   DOI: 10.1029/2018JA025459 electromagnetic; parker solar probe; Solar Probe Plus; thermal noise; upper hybrid |
2016 |
Slow Solar Wind: Observations and Modeling While it is certain that the fast solar wind originates from coronal holes, where and how the slow solar wind (SSW) is formed remains an outstanding question in solar physics even in the post-SOHO era. The quest for the SSW origin forms a major objective for the planned future missions such as the Solar Orbiter and Solar Probe Plus. Nonetheless, results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have be ... Abbo, L.; Ofman, L.; Antiochos, S.; Hansteen, V.; Harra, L.; Ko, Y.-K.; Lapenta, G.; Li, B.; Riley, P.; Strachan, L.; von Steiger, R.; Wang, Y.-M.; Published by: Space Science Reviews Published on: 11/2016 YEAR: 2016   DOI: 10.1007/s11214-016-0264-1 Corona; Coronal streamers; MHD and kinetic models; parker solar probe; Solar Probe Plus; Solar wind; Sun |
The Wide-Field Imager for Solar Probe Plus (WISPR) Vourlidas, Angelos; Howard, Russell; Plunkett, Simon; Korendyke, Clarence; Thernisien, Arnaud; Wang, Dennis; Rich, Nathan; Carter, Michael; Chua, Damien; Socker, Dennis; Linton, Mark; Morrill, Jeff; Lynch, Sean; Thurn, Adam; Van Duyne, Peter; Hagood, Robert; Clifford, Greg; Grey, Phares; Velli, Marco; Liewer, Paulett; Hall, Jeffrey; DeJong, Eric; Mikic, Zoran; Rochus, Pierre; Mazy, Emanuel; Bothmer, Volker; Rodmann, Jens; Published by: Space Science Reviews Published on: 02/2015 YEAR: 2016   DOI: 10.1007/s11214-014-0114-y Heliospheric imager; Imaging; Parker Data Used; Solar corona; Solar Probe Plus; Solar wind; Thomson scattering |
2013 |
Korendyke, Clarence; Vourlidas, Angelos; Plunkett, Simon; Howard, Russell; Wang, Dennis; Marshall, Cheryl; Waczynski, Augustyn; Janesick, James; Elliott, Thomas; Tun, Samuel; Tower, John; Grygon, Mark; Keller, David; Clifford, Gregory; Published by: Published on: 10/2013 YEAR: 2013   DOI: 10.1117/12.2027655 |
The Naval Research Laboratory is developing next generation CMOS imaging arrays for the Solar Orbiter and Solar Probe Plus missions. The device development is nearly complete with flight device delivery scheduled for summer of 2013. The 4Kx4K mosaic array with 10micron pixels is well suited to the panoramic imaging required for the Solar Orbiter mission. The devices are robust (<100krad) and exhibit minimal performance degradation with respect to radiation. The device design and performance are described. © 2013 SPIE. Korendyke, Clarence; Vourlidas, Angelos; Plunkett, Simon; Howard, Russell; Wang, Dennis; Marshall, Cheryl; Waczynski, Augustyn; Janesick, James; Elliot, Thomas; Tuna, Samuel; Tower, John; Grygon, Mark; Keller, David; Clifford, Gregory; Published by: Proceedings of SPIE - The International Society for Optical Engineering Published on: CMOS integrated circuits; Heat radiation; Probes; Research laboratories; Parker Engineering |
2009 |
Solar impulsive energetic electron events Published by: Published on: 01/2009 Electron events; coronal mass ejections; Energetic electrons; Energetic particles; solar flares; Radio bursts |
1