Notice:
|
Found 89 entries in the Bibliography.
Showing entries from 1 through 50
2023 |
Magnetic Reconnection as the Driver of the Solar Wind We present EUV solar observations showing evidence for omnipresent jetting activity driven by small-scale magnetic reconnection at the base of the solar corona. We argue that the physical mechanism that heats and drives the solar wind at its source is ubiquitous magnetic reconnection in the form of small-scale jetting activity (a.k.a. jetlets). This jetting activity, like the solar wind and the heating of the coronal plasma, is ubiquitous regardless of the solar cycle phase. Each event arises from small-scale reconnection of ... Raouafi, Nour; Stenborg, G.; Seaton, D.~B.; Wang, H.; Wang, J.; DeForest, C.~E.; Bale, S.~D.; Drake, J.~F.; Uritsky, V.~M.; Karpen, J.~T.; DeVore, C.~R.; Sterling, A.~C.; Horbury, T.~S.; Harra, L.~K.; Bourouaine, S.; Kasper, J.~C.; Kumar, P.; Phan, T.~D.; Velli, M.; Published by: \apj Published on: mar YEAR: 2023   DOI: 10.3847/1538-4357/acaf6c Parker Data Used; Solar corona; Solar wind; magnetic fields; Solar magnetic reconnection; 1483; 1534; 994; 1504; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Magnetic Reconnection as the Driver of the Solar Wind We present EUV solar observations showing evidence for omnipresent jetting activity driven by small-scale magnetic reconnection at the base of the solar corona. We argue that the physical mechanism that heats and drives the solar wind at its source is ubiquitous magnetic reconnection in the form of small-scale jetting activity (a.k.a. jetlets). This jetting activity, like the solar wind and the heating of the coronal plasma, is ubiquitous regardless of the solar cycle phase. Each event arises from small-scale reconnection of ... Raouafi, Nour; Stenborg, G.; Seaton, D.~B.; Wang, H.; Wang, J.; DeForest, C.~E.; Bale, S.~D.; Drake, J.~F.; Uritsky, V.~M.; Karpen, J.~T.; DeVore, C.~R.; Sterling, A.~C.; Horbury, T.~S.; Harra, L.~K.; Bourouaine, S.; Kasper, J.~C.; Kumar, P.; Phan, T.~D.; Velli, M.; Published by: \apj Published on: mar YEAR: 2023   DOI: 10.3847/1538-4357/acaf6c Parker Data Used; Solar corona; Solar wind; magnetic fields; Solar magnetic reconnection; 1483; 1534; 994; 1504; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
The omnipresence of transient fluctuations in the solar wind, such as switchbacks (SBs) and small-scale magnetic flux ropes (SMFRs), have been well observed by the in situ observation of Parker Solar Probe (PSP), yet their sources are not clear. Possible candidates fall into two categories: solar origin and in situ generation in the solar wind. Among the solar-origin scenarios, the small-scale activities (such as ejections and eruptions) in coronal hole (CH) regions, where solar wind originates, are suggested as candidates. ... Huang, Nengyi; Anna, Sophia; Wang, Haimin; Published by: \apjl Published on: mar YEAR: 2023   DOI: 10.3847/2041-8213/acc0f1 Parker Data Used; Solar coronal holes; Solar coronal transients; Jets; 1484; 312; 870 |
The supersonic solar wind, first predicted by Parker and then observed by Mariners, extends to form a heliosphere around the Sun. The energy supply from the energy containing range, the energy cascade though the inertial range, and the eventual energy dissipation are three basic processes of the energy transfer in the solar wind and have been studied for a long time. However, some basic issues remain to be discovered. Here, we review the recent progress in the mechanisms of energy transfer of the solar wind turbulence from t ... Wu, Honghong; Tu, Chuanyi; He, Jiansen; Wang, Xin; Yang, Liping; Published by: Physics of Plasmas Published on: feb YEAR: 2023   DOI: 10.1063/5.0121140 |
Turbulent magnetic reconnection generated by intense lasers Turbulent magnetic reconnection is believed to occur in astrophysical plasmas, and it has been suggested to be a trigger of solar flares. It often occurs in long stretched and fragmented current sheets. Recent observations by the Parker Solar Probe, the Solar Dynamics Observatory and in situ satellite missions agree with signatures expected from turbulent reconnection. However, the underlying mechanisms, including how magnetic energy stored in the Sun s magnetic field is dissipated, remain unclear. Here we demonstrate turbul ... Ping, Yongli; Zhong, Jiayong; Wang, Xiaogang; Han, Bo; Sun, Wei; Zhang, Yapeng; Yuan, Dawei; Xing, Chunqing; Wang, Jianzhao; Liu, Zhengdong; Zhang, Zhe; Qiao, Bin; Zhang, Hua; Li, Yutong; Zhu, Jianqiang; Zhao, Gang; Zhang, Jie; Published by: Nature Physics Published on: feb YEAR: 2023   DOI: 10.1038/s41567-022-01855-x |
Turbulent magnetic reconnection generated by intense lasers Turbulent magnetic reconnection is believed to occur in astrophysical plasmas, and it has been suggested to be a trigger of solar flares. It often occurs in long stretched and fragmented current sheets. Recent observations by the Parker Solar Probe, the Solar Dynamics Observatory and in situ satellite missions agree with signatures expected from turbulent reconnection. However, the underlying mechanisms, including how magnetic energy stored in the Sun s magnetic field is dissipated, remain unclear. Here we demonstrate turbul ... Ping, Yongli; Zhong, Jiayong; Wang, Xiaogang; Han, Bo; Sun, Wei; Zhang, Yapeng; Yuan, Dawei; Xing, Chunqing; Wang, Jianzhao; Liu, Zhengdong; Zhang, Zhe; Qiao, Bin; Zhang, Hua; Li, Yutong; Zhu, Jianqiang; Zhao, Gang; Zhang, Jie; Published by: Nature Physics Published on: feb YEAR: 2023   DOI: 10.1038/s41567-022-01855-x |
Identifying the energy release site in a solar microflare with a jet Context. One of the main science questions of the Solar Orbiter and Parker Solar Probe missions deals with understanding how electrons in the lower solar corona are accelerated and how they subsequently access interplanetary space. \ Aims: We aim to investigate the electron acceleration and energy release sites as well as the manner in which accelerated electrons access the interplanetary space in the case of the SOL2021-02-18T18:05 event, a GOES A8 class microflare associated with a coronal jet. \ Methods: This study takes ... Battaglia, Andrea; Wang, Wen; Saqri, Jonas; Podladchikova, Tatiana; Veronig, Astrid; Collier, Hannah; Dickson, Ewan; Podladchikova, Olena; Monstein, Christian; Warmuth, Alexander; Schuller, Fr\; Harra, Louise; Krucker, Säm; Published by: \aap Published on: feb YEAR: 2023   DOI: 10.1051/0004-6361/202244996 Parker Data Used; Sun: flares; Sun: corona; Sun: X-rays; gamma rays; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
2022 |
Observation of a Magnetic Switchback in the Solar Corona Switchbacks are sudden, large radial deflections of the solar wind magnetic field, widely revealed in interplanetary space by the Parker Solar Probe. The switchbacks formation mechanism and sources are still unresolved, although candidate mechanisms include Alfv\ enic turbulence, shear-driven Kelvin-Helmholtz instabilities, interchange reconnection, and geometrical effects related to the Parker spiral. This Letter presents observations from the Metis coronagraph on board a Solar Orbiter of a single large propagating S-shape ... Telloni, Daniele; Zank, Gary; Stangalini, Marco; Downs, Cooper; Liang, Haoming; Nakanotani, Masaru; Andretta, Vincenzo; Antonucci, Ester; Sorriso-Valvo, Luca; Adhikari, Laxman; Zhao, Lingling; Marino, Raffaele; Susino, Roberto; Grimani, Catia; Fabi, Michele; Amicis, Raffaella; Perrone, Denise; Bruno, Roberto; Carbone, Francesco; Mancuso, Salvatore; Romoli, Marco; Da Deppo, Vania; Fineschi, Silvano; Heinzel, Petr; Moses, John; Naletto, Giampiero; Nicolini, Gianalfredo; Spadaro, Daniele; Teriaca, Luca; Frassati, Federica; Jerse, Giovanna; Landini, Federico; Pancrazzi, Maurizio; Russano, Giuliana; Sasso, Clementina; Biondo, Ruggero; Burtovoi, Aleksandr; Capuano, Giuseppe; Casini, Chiara; Casti, Marta; Chioetto, Paolo; De Leo, Yara; Giarrusso, Marina; Liberatore, Alessandro; Berghmans, David; Auchère, Fr\; Cuadrado, Regina; Chitta, Lakshmi; Harra, Louise; Kraaikamp, Emil; Long, David; Mandal, Sudip; Parenti, Susanna; Pelouze, Gabriel; Peter, Hardi; Rodriguez, Luciano; Schühle, Udo; Schwanitz, Conrad; Smith, Phil; Verbeeck, Cis; Zhukov, Andrei; Published by: \apjl Published on: sep YEAR: 2022   DOI: 10.3847/2041-8213/ac8104 Parker Data Used; Solar corona; Solar magnetic reconnection; Solar magnetic fields; Magnetohydrodynamics; Solar Coronal Waves; Slow solar wind; 1483; 1504; 1503; 1964; 1995; 1873; Astrophysics - Solar and Stellar Astrophysics |
Exact laws for evaluating cascade rates, tracing back to the Kolmogorov 4/5 law, have been extended to many systems of interest including magnetohydrodynamics (MHD), and compressible flows of the magnetofluid and ordinary fluid types. It is understood that implementations may be limited by the quantity of available data and by the lack of turbulence symmetry. Assessment of the accuracy and feasibility of such third-order (or Yaglom) relations is most effectively accomplished by examining the von K\ arm\ an-Howarth equati ... Wang, Yanwen; Chhiber, Rohit; Adhikari, Subash; Yang, Yan; Bandyopadhyay, Riddhi; Shay, Michael; Oughton, Sean; Matthaeus, William; Cuesta, Manuel; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac8f90 Parker Data Used; interplanetary turbulence; Space plasmas; Plasma physics; Magnetohydrodynamics; Magnetohydrodynamical simulations; 830; 1544; 2089; 1964; 1966; Physics - Space Physics; Physics - Fluid Dynamics; Physics - Plasma Physics |
Higher-order Turbulence Statistics in the Sub-Alfv\ enic Solar Wind Observed by Parker Solar Probe Parker Solar Probe has been the first spacecraft to enter the deep corona below the Alfv\ en critical point. Here we examine the higher-order statistical properties of magnetic-field fluctuations in the sub-Alfv\ enic solar wind and compare the results with the neighboring super-Alfv\ enic region. The intermittency and multifractal properties are analyzed by inspecting the probability density functions, the scale- dependent kurtosis, and fractal spectrum of magnetic-field fluctuations. It is found that the magnetic-field flu ... Zhang, J.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Xu, S.~B.; Bandyopadhyay, R.; Wei, Y.~Y.; Xiong, Q.~Y.; Wang, Z.; Yu, L.; Lin, R.~T.; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac8c34 Parker Data Used; Solar wind; interplanetary turbulence; 1534; 830 |
We examine in greater detail five events previously identified as being sources of strong transient coronal outflows in a solar polar region in Hinode/Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Doppler data. Although relatively compact or faint and inconspicuous in Hinode/X-ray Telescope (XRT) soft-X-ray (SXR) images and in Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) EUV images, we find that all of these events are consistent with being faint coronal X-ray jets. The evidence for this is that ... Sterling, Alphonse; Schwanitz, Conrad; Harra, Louise; Raouafi, Nour; Panesar, Navdeep; Moore, Ronald; Published by: \apj Published on: nov YEAR: 2022   DOI: 10.3847/1538-4357/ac9960 Parker Data Used; Solar filament eruptions; Solar corona; Solar x-ray emission; Solar extreme ultraviolet emission; 1981; 1483; 1536; 1493; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Ion Kinetics of Plasma Flows: Earth s Magnetosheath versus Solar Wind Revealing the formation, dynamics, and contribution to plasma heating of magnetic field fluctuations in the solar wind is an important task for heliospheric physics and for a general plasma turbulence theory. Spacecraft observations in the solar wind are limited to spatially localized measurements, so that the evolution of fluctuation properties with solar wind propagation is mostly studied via statistical analyses of data sets collected by different spacecraft at various radial distances from the Sun. In this study we inves ... Artemyev, A.~V.; Shi, C.; Lin, Y.; Nishimura, Y.; Gonzalez, C.; Verniero, J.; Wang, X.; Velli, M.; Tenerani, A.; Sioulas, N.; Published by: \apj Published on: nov YEAR: 2022   DOI: 10.3847/1538-4357/ac96e4 Parker Data Used; interplanetary turbulence; Solar wind; 830; 1534 |
Many magnetic field switchbacks were detected by the Parker Solar Probe and their origin remains a puzzle. We did a superposed epoch analysis (SEA) to investigate the plasma characteristics in the vicinity of switchbacks and their radial evolution. SEA is good way to get the statistical average features of certain types of events that have obvious boundaries and different durations. For 55 events ranging from 1 to 30 min, the SEA results show that a small parcel of plasma is piling up in front of the reversed field, and ... Liu, Ruoyan; Liu, Yong; Huang, Jia; Huang, Zhaohui; Klecker, Berndt; Wang, Chi; Published by: Journal of Geophysical Research (Space Physics) Published on: may YEAR: 2022   DOI: 10.1029/2022JA030382 |
The S-shaped magnetic structure in the solar wind formed by the twisting of magnetic field lines is called a switchback, whose main characteristics are the reversal of the magnetic field and the significant increase in the solar wind radial velocity. We identify 242 switchbacks during the first two encounters of Parker Solar Probe. Statistics methods are applied to analyze the distribution and the rotation angle and direction of the magnetic field rotation of the switchbacks. The diameter of switchbacks is estimated with a m ... Meng, Ming-Ming; Liu, Ying; Chen, Chong; Wang, Rui; Published by: Research in Astronomy and Astrophysics Published on: mar YEAR: 2022   DOI: 10.1088/1674-4527/ac49e4 Parker Data Used; ISM: magnetic fields; methods: statistical; (Sun:) solar wind; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Categorizing MHD Discontinuities in the Inner Heliosphere by Utilizing the PSP Mission The interplanetary discontinuities (IDs) have been widely observed in astrophysical and space plasmas, while their characteristics and evolutions within 0.3 AU are still unclear due to the limitation of spacecraft orbits in previous missions. Here, we report three ID events, including a rotational discontinuity (RD), a tangential discontinuity (TD), and a suspected contact discontinuity (CD), detected by the Parker Solar Probe in a previously unexplored region of the heliosphere as close to the Sun as 0.13 AU. By the combina ... Liu, Y.~Y.; Fu, H.~S.; Cao, J.~B.; Yu, Y.; Liu, C.~M.; Wang, Z.; Guo, Z.~Z.; He, R.~J.; Published by: Journal of Geophysical Research (Space Physics) Published on: mar YEAR: 2022   DOI: 10.1029/2021JA029983 |
PSP Observations of a Slow Shock Pair Bounding a Large-Scale Plasmoid/Macro Magnetic Hole Slow shocks are introduced to be the main dissipation sites in Petschek reconnection model, but they are seldom observed in interplanetary space. We report a slow shock pair bounding a plasmoid/macro magnetic hole observed by Parker Solar Probe. The jump conditions across the shocks are examined and confirmed to satisfy the Rankine-Hugoniot relations. The flow speed in the preshock and postshock regions of both shocks match up with the characteristics of slow shocks. The slow shock pair is suggested to be a part of a curved ... Zhou, Zilu; Xu, Xiaojun; Zuo, Pingbing; Wang, Yi; Wang, Ludi; Ye, Yudong; Wang, Ming; Chang, Qing; Wang, Xing; Luo, Lei; Published by: \grl Published on: mar YEAR: 2022   DOI: 10.1029/2021GL097564 Parker Data Used; slow shocks; magnetic reconnection; Solar wind; magnetic hole |
PSP Observations of a Slow Shock Pair Bounding a Large-Scale Plasmoid/Macro Magnetic Hole Slow shocks are introduced to be the main dissipation sites in Petschek reconnection model, but they are seldom observed in interplanetary space. We report a slow shock pair bounding a plasmoid/macro magnetic hole observed by Parker Solar Probe. The jump conditions across the shocks are examined and confirmed to satisfy the Rankine-Hugoniot relations. The flow speed in the preshock and postshock regions of both shocks match up with the characteristics of slow shocks. The slow shock pair is suggested to be a part of a curved ... Zhou, Zilu; Xu, Xiaojun; Zuo, Pingbing; Wang, Yi; Wang, Ludi; Ye, Yudong; Wang, Ming; Chang, Qing; Wang, Xing; Luo, Lei; Published by: \grl Published on: mar YEAR: 2022   DOI: 10.1029/2021GL097564 Parker Data Used; slow shocks; magnetic reconnection; Solar wind; magnetic hole |
PSP Observations of a Slow Shock Pair Bounding a Large-Scale Plasmoid/Macro Magnetic Hole Slow shocks are introduced to be the main dissipation sites in Petschek reconnection model, but they are seldom observed in interplanetary space. We report a slow shock pair bounding a plasmoid/macro magnetic hole observed by Parker Solar Probe. The jump conditions across the shocks are examined and confirmed to satisfy the Rankine-Hugoniot relations. The flow speed in the preshock and postshock regions of both shocks match up with the characteristics of slow shocks. The slow shock pair is suggested to be a part of a curved ... Zhou, Zilu; Xu, Xiaojun; Zuo, Pingbing; Wang, Yi; Wang, Ludi; Ye, Yudong; Wang, Ming; Chang, Qing; Wang, Xing; Luo, Lei; Published by: \grl Published on: mar YEAR: 2022   DOI: 10.1029/2021GL097564 Parker Data Used; slow shocks; magnetic reconnection; Solar wind; magnetic hole |
PSP Observations of a Slow Shock Pair Bounding a Large-Scale Plasmoid/Macro Magnetic Hole Slow shocks are introduced to be the main dissipation sites in Petschek reconnection model, but they are seldom observed in interplanetary space. We report a slow shock pair bounding a plasmoid/macro magnetic hole observed by Parker Solar Probe. The jump conditions across the shocks are examined and confirmed to satisfy the Rankine-Hugoniot relations. The flow speed in the preshock and postshock regions of both shocks match up with the characteristics of slow shocks. The slow shock pair is suggested to be a part of a curved ... Zhou, Zilu; Xu, Xiaojun; Zuo, Pingbing; Wang, Yi; Wang, Ludi; Ye, Yudong; Wang, Ming; Chang, Qing; Wang, Xing; Luo, Lei; Published by: \grl Published on: mar YEAR: 2022   DOI: 10.1029/2021GL097564 Parker Data Used; slow shocks; magnetic reconnection; Solar wind; magnetic hole |
Amiri, Mandana; Bandura, Kevin; Boskovic, Anja; Cliche, Jean-Fran\ccois; Deng, Meiling; Dobbs, Matt; Fandino, Mateus; Foreman, Simon; Halpern, Mark; Hill, Alex; Hinshaw, Gary; Höfer, Carolin; Kania, Joseph; Landecker, T.~L.; MacEachern, Joshua; Masui, Kiyoshi; Mena-Parra, Juan; Newburgh, Laura; Ordog, Anna; Pinsonneault-Marotte, Tristan; Polzin, Ava; Reda, Alex; Shaw, Richard; Siegel, Seth; Singh, Saurabh; Vanderlinde, Keith; Wang, Haochen; Willis, James; Wulf, Dallas; Collaboration, CHIME; Published by: \apj Published on: jun YEAR: 2022   DOI: 10.3847/1538-4357/ac6b9f Parker Data Used; Radio telescopes; Interferometers; Calibration; Quiet Sun; 1360; 805; 2179; 1322; Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Cosmology and Nongalactic Astrophysics |
The solar wind in the inner heliosphere has been observed by Parker Solar Probe (PSP) to exhibit abundant wave activities. The cyclotron wave modes responding to ions or electrons are among the most crucial wave components. However, their origin and evolution in the inner heliosphere close to the Sun remains a mystery. Specifically, it remains unknown whether it is an emitted signal from the solar atmosphere or an eigenmode growing locally in the heliosphere due to plasma instability. To address and resolve this controversy, ... He, Jiansen; Wang, Ying; Zhu, Xingyu; Duan, Die; Verscharen, Daniel; Zhao, Guoqing; Published by: \apj Published on: jul YEAR: 2022   DOI: 10.3847/1538-4357/ac6c8e Parker Data Used; Solar wind; interplanetary turbulence; 1534; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Searching for a Solar Source of Magnetic-Field Switchbacks in Parker Solar Probe s First Encounter Parker Solar Probe observations show ubiquitous magnetic-field reversals closer to the Sun, often referred to as switchbacks . The switchbacks have been observed before in the solar wind near 1 AU and beyond, but their occurrence was historically rare. PSP measurements below \ensuremath\sim 0.2 AU show that switchbacks are, however, the most prominent structures in the young solar wind. In this work, we analyze remote-sensing observations of a small equatorial coronal hole to which PSP was connected during the perihel ... de Pablos, D.; Samanta, T.; Badman, S.~T.; Schwanitz, C.; Bahauddin, S.~M.; Harra, L.~K.; Petrie, G.; Cormack, Mac; Mandrini, C.~H.; Raouafi, N.~E.; Pillet, Martinez; Velli, M.; Published by: \solphys Published on: jul YEAR: 2022   DOI: 10.1007/s11207-022-02022-4 |
Based on the Parker Solar Probe mission, this paper presents the observations of two correlations in solar wind turbulence near the Sun for the first time, demonstrating the clear existence of the following two correlations. One is positive correlation between the proton temperature and turbulent magnetic energy density. The other is negative correlation between the spectral index and magnetic helicity. It is found that the former correlation has a maximum correlation coefficient (CC) at the wavenumber k \ensuremath\rho $_ p ... Zhao, G.~Q.; Lin, Y.; Wang, X.~Y.; Feng, H.~Q.; Wu, D.~J.; Kasper, J.~C.; Published by: \apj Published on: jan YEAR: 2022   DOI: 10.3847/1538-4357/ac3747 |
We utilize the data from the Parker Solar Probe mission at its first perihelion to investigate the three-dimensional (3D) anisotropies and scalings of solar wind turbulence for the total, perpendicular, and parallel magnetic-field fluctuations at kinetic scales in the inner heliosphere. By calculating the five-point second-order structure functions, we find that the three characteristic lengths of turbulence eddies for the total and the perpendicular magnetic-field fluctuations in the local reference frame $(\hatL_\perp ,\ha ... Zhang, J.; Huang, S.~Y.; He, J.~S.; Wang, T.~Y.; Yuan, Z.~G.; Deng, X.~H.; Jiang, K.; Wei, Y.~Y.; Xu, S.~B.; Xiong, Q.~Y.; Lin, R.~T.; Yu, L.; Published by: \apjl Published on: jan YEAR: 2022   DOI: 10.3847/2041-8213/ac4027 |
Parker Solar Probe Imaging of the Night Side of Venus We present images of Venus from the Wide-Field Imager for Parker Solar Probe (WISPR) telescope on board the Parker Solar Probe (PSP) spacecraft, obtained during PSP s third and fourth flybys of Venus on 2020 July 11 and 2021 February 20, respectively. Thermal emission from the surface is observed on the night side, representing the shortest wavelength observations of this emission ever, the first detection of the Venusian surface by an optical telescope observing below 0.8 \ensuremath\mum. Consistent with previous observatio ... Wood, Brian; Hess, Phillip; Lustig-Yaeger, Jacob; Gallagher, Brendan; Korwan, Daniel; Rich, Nathan; Stenborg, Guillermo; Thernisien, Arnaud; Qadri, Syed; Santiago, Freddie; Peralta, Javier; Arney, Giada; Izenberg, Noam; Vourlidas, Angelos; Linton, Mark; Howard, Russell; Raouafi, Nour; Published by: \grl Published on: feb YEAR: 2022   DOI: 10.1029/2021GL096302 |
Using the Parker Solar Probe measurements, this Letter reports two new types of multiband electrostatic waves in and near the heliospheric current sheet. They are classified into the f < f $_ce$ and f > f $_ce$ multiband electrostatic waves, in which most (or all) of the bands in the former type are lower than f $_ce$, and all of the bands in the latter type are higher than f $_ce$, where f and f $_ce$ denotes the wave frequency and the electron cyclotron frequency, respectively. This Letter also exhibits observational evide ... Shi, Chen; Zhao, Jinsong; Malaspina, David; Bale, Stuart; Dong, Xiangcheng; Wang, Tieyan; Wu, Dejin; Published by: \apjl Published on: feb YEAR: 2022   DOI: 10.3847/2041-8213/ac4d37 |
The von K\ arm\ an-Howarth equations give a starting basis for the classical turbulence theory. The formula for the magnetohydrodynamics von K\ arm\ an decay rate represents an energy source in many solar wind models with turbulence as the driver. However, it still lacks the radial trend comparison between the von K\ arm\ an decay rate, the energy supply rate, and the perpendicular heating rate based on direct observations of the solar wind. Here we carry out this kind of comparison for the first time using Parker Solar Prob ... Wu, Honghong; Tu, Chuanyi; He, Jiansen; Wang, Xin; Yang, Liping; Published by: \apj Published on: feb YEAR: 2022   DOI: 10.3847/1538-4357/ac4413 |
Small-Scale Magnetic Holes in the Solar Wind Observed by Parker Solar Probe The small-scale magnetic hole (SSMH), characterized by magnetic field depression, is a structure with the size in the order of proton gyro-radius. SSMHs near the Earth or other planets have been widely observed in recent years. However, SSMHs in the solar wind near the Sun are rarely investigated due to mission constraints. In the present study, SSMHs in the pristine solar wind within a wide heliocentric distance range are analyzed based on the Parker Solar Probe (PSP) Mission measurements. A total of 2,416 SSMHs are success ... Yu, L.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Wei, Y.~Y.; Zhang, J.; Xu, S.~B.; Xiong, Q.~Y.; Wang, Z.; Lin, R.~T.; Li, Y.~J.; Wang, C.~M.; Song, G.~J.; Published by: Journal of Geophysical Research (Space Physics) Published on: aug YEAR: 2022   DOI: 10.1029/2022JA030505 Parker Data Used; Solar wind; small-scale magnetic hole; PSP |
Small-Scale Magnetic Holes in the Solar Wind Observed by Parker Solar Probe The small-scale magnetic hole (SSMH), characterized by magnetic field depression, is a structure with the size in the order of proton gyro-radius. SSMHs near the Earth or other planets have been widely observed in recent years. However, SSMHs in the solar wind near the Sun are rarely investigated due to mission constraints. In the present study, SSMHs in the pristine solar wind within a wide heliocentric distance range are analyzed based on the Parker Solar Probe (PSP) Mission measurements. A total of 2,416 SSMHs are success ... Yu, L.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Wei, Y.~Y.; Zhang, J.; Xu, S.~B.; Xiong, Q.~Y.; Wang, Z.; Lin, R.~T.; Li, Y.~J.; Wang, C.~M.; Song, G.~J.; Published by: Journal of Geophysical Research (Space Physics) Published on: aug YEAR: 2022   DOI: 10.1029/2022JA030505 Parker Data Used; Solar wind; small-scale magnetic hole; PSP |
Solar Chromospheric Network as a Source for Solar Wind Switchbacks Recent studies suggest that the magnetic switchbacks (SBs) detected by the Parker Solar Probe carry information on the scales of solar supergranulation (large scale) and granulation (medium scale). We test this claim using high-resolution H\ensuremath\alpha images obtained with the visible spectropolarimeters of the Goode Solar Telescope in Big Bear Solar Observatory. As possible solar sources, we count all the spicule-like features standing along the chromospheric networks near the coronal hole boundary visible in the H\ens ... Lee, Jeongwoo; Yurchyshyn, Vasyl; Wang, Haimin; Yang, Xu; Cao, Wenda; Oliveros, Juan; Published by: \apjl Published on: aug YEAR: 2022   DOI: 10.3847/2041-8213/ac86bf Parker Data Used; Solar magnetic fields; Solar chromosphere; Solar wind; interplanetary magnetic fields; 1503; 1479; 1534; 824 |
Using Single-view Observations of Cometary Plasma Tails to Infer Solar Wind Speed A comet plasma tail is a product of the interaction between the solar wind and the comet s coma, and has long been studied as a natural probe of the solar wind condition. We previously developed a method to derive the solar wind speed from dual-view observations of comet plasma tails. Here we improve the method to use single-view observations by assuming a radially propagating solar wind and apply it to two comets, C/2011 W3 (Lovejoy) and C/2012 S1 (ISON) observed by coronagraphs on board the Solar and Heliospheric Observato ... Cheng, Long; Wang, Yuming; Li, Xiaolei; Published by: \apj Published on: apr YEAR: 2022   DOI: 10.3847/1538-4357/ac5410 |
On the Conservation of Turbulence Energy in Turbulence Transport Models Zank et al. developed models describing the transport of low-frequency incompressible and nearly incompressible turbulence in inhomogeneous flows. The formalism was based on expressing the fluctuating variables in terms of the Elsässar variables and then taking moments subject to various closure hypotheses. The turbulence transport models are different according to whether the plasma beta regime is large, of order unity, or small. Here, we show explicitly that the three sets of turbulence transport models admit a conser ... Wang, B.; Zank, G.~P.; Adhikari, L.; Zhao, L.; Published by: \apj Published on: apr YEAR: 2022   DOI: 10.3847/1538-4357/ac596e Parker Data Used; Magnetohydrodynamics; interplanetary turbulence; 1964; 830; Physics - Plasma Physics; Astrophysics - High Energy Astrophysical Phenomena; Astrophysics - Solar and Stellar Astrophysics; Physics - Fluid Dynamics |
Using the Parker Solar Probe data taken in the inner heliosphere, we investigate the power and spatial anisotropy of magnetic field spectra at kinetic scales (i.e., around sub-ion scales) in solar wind turbulence in the inner heliosphere. We find that strong anisotropy of the magnetic spectra occurs at kinetic scales with the strongest power in the perpendicular direction with respect to the local magnetic field (forming an angle \ensuremath\theta $_B$ with the mean flow velocity). The spectral index of the magnetic spectra ... Huang, S.~Y.; Xu, S.~B.; Zhang, J.; Sahraoui, F.; es, Andr\; He, J.~S.; Yuan, Z.~G.; Deng, X.~H.; Jiang, K.; Wei, Y.~Y.; Xiong, Q.~Y.; Wang, Z.; Yu, L.; Lin, R.~T.; Published by: \apjl Published on: apr YEAR: 2022   DOI: 10.3847/2041-8213/ac5f02 Parker Data Used; Solar wind; interplanetary turbulence; Heliosphere; Space plasmas; 1534; 830; 711; 1544; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
2021 |
We report nonlinear wave-wave coupling related to whistler-mode or electron Bernstein waves in the near-Sun slow solar wind with Parker Solar Probe (PSP) data. Prominent plasma wave power enhancements usually exist near the electron gyrofrequency (f$_ce$), identified as electrostatic whistler-mode and electron Bernstein waves (Malaspina et al. 2020). We find that these plasma waves near f$_ce$ typically have a harmonic spectral structure and further classify them into three types identified by the characteristics of wave fre ... Ma, Jiuqi; Gao, Xinliang; Yang, Zhongwei; Tsurutani, Bruce; Liu, Mingzhe; Lu, Quanming; Wang, Shui; Published by: \apj Published on: sep YEAR: 2021   DOI: 10.3847/1538-4357/ac0ef4 |
The Spacecraft Interaction Plasma Software package (SPIS), a three dimension particle in cell (PIC) code, was used to model the Parker Solar Probe (PSP) spacecraft and FIELDS instrument and their interactions with the Solar wind. Our SPIS modeling relied on material properties of new spacecraft materials that we had obtained in previous work. The model was used to find the floating potentials of the spacecraft and FIELDS antennas at different distances from the Sun (from 1AU to 0.046AU). We find the following results: At gre ... Diaz-Aguado, M.~F.; Bonnell, J.~W.; Bale, S.~D.; Wang, J.; Gruntman, M.; Published by: Journal of Geophysical Research (Space Physics) Published on: may YEAR: 2021   DOI: 10.1029/2020JA028688 |
Solar Origin of Compressive Alfv\ enic Spikes/Kinks as Observed by Parker Solar Probe The solar wind is found by the Parker Solar Probe to be abundant with Alfv\ enic velocity spikes and magnetic field kinks. Temperature enhancement is another remarkable feature associated with the Alfv\ enic spikes. How the prototype of these coincident phenomena is generated intermittently in the source region is an important and wide-ranging subject. Here we propose a new model introducing guide-field discontinuity into the interchange magnetic reconnection between open funnels and closed loops with different magnetic heli ... He, Jiansen; Zhu, Xingyu; Yang, Liping; Hou, Chuanpeng; Duan, Die; Zhang, Lei; Wang, Ying; Published by: \apjl Published on: may YEAR: 2021   DOI: 10.3847/2041-8213/abf83d Parker Data Used; Solar wind; Alfven waves; Solar atmosphere; Solar magnetic reconnection; 1534; 23; 1477; 1504 |
Anisotropy of Solar Wind Turbulence in the Inner Heliosphere at Kinetic Scales: PSP Observations The anisotropy of solar wind turbulence is a critical issue in understanding the physics of energy transfer between scales and energy conversion between fields and particles in the heliosphere. Using the measurement of Parker Solar Probe (PSP), we present an observation of the anisotropy at kinetic scales in the slow, Alfv\ enic, solar wind in the inner heliosphere. The magnetic compressibility behaves as expected for kinetic Alfv\ enic turbulence below the ion scale. A steepened transition range is found between the inertia ... Duan, Die; He, Jiansen; Bowen, Trevor; Woodham, Lloyd; Wang, Tieyan; Chen, Christopher; Mallet, Alfred; Bale, Stuart; Published by: \apjl Published on: jul YEAR: 2021   DOI: 10.3847/2041-8213/ac07ac Parker Data Used; Solar wind; interplanetary turbulence; Alfven waves; 1534; 830; 23; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics |
Domains of Magnetic Pressure Balance in Parker Solar Probe Observations of the Solar Wind The Parker Solar Probe (PSP) spacecraft is performing the first in situ exploration of the solar wind within 0.2 au of the Sun. Initial observations confirmed the Alfv\ enic nature of aligned fluctuations of the magnetic field B and velocity V in solar wind plasma close to the Sun, in domains of nearly constant magnetic field magnitude \ensuremath\mid B \ensuremath\mid, i.e., approximate magnetic pressure balance. Such domains are interrupted by particularly strong fluctuations, including but not limited to radial field (pol ... Ruffolo, David; Ngampoopun, Nawin; Bhora, Yash; Thepthong, Panisara; Pongkitiwanichakul, Peera; Matthaeus, William; Chhiber, Rohit; Published by: \apj Published on: dec YEAR: 2021   DOI: 10.3847/1538-4357/ac2ee3 Parker Data Used; 1534; 830; 1544; 824; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
The fluctuations observed in the slow solar wind at 1 au by the WIND spacecraft are shown by recent studies to consist of mainly magnetic-field directional turning and magnetic-velocity alignment structure (MVAS). How these structures are created has been a question because the nature of the fluctuations in the near-Sun region remains unknown. Here, we present an analysis of the measurements in the slow solar wind from 0.1-0.3 au by Parker Solar Probe during its first six orbits. We present the distributions in the $C_\mathr ... Wu, Honghong; Tu, Chuanyi; Wang, Xin; Yang, Liping; Published by: \apj Published on: dec YEAR: 2021   DOI: 10.3847/1538-4357/ac3331 |
Probing Upflowing Regions in the Quiet Sun and Coronal Holes Recent observations from Parker Solar Probe have revealed that the solar wind has a highly variable structure. How this complex behaviour is formed in the solar corona is not yet known, since it requires omnipresent fluctuations, which constantly emit material to feed the wind. In this article we analyse 14 upflow regions in the solar corona to find potential sources for plasma flow. The upflow regions are derived from spectroscopic data from the EUV Imaging Spectrometer (EIS) on board Hinode determining their Doppler veloci ... Schwanitz, Conrad; Harra, Louise; Raouafi, Nour; Sterling, Alphonse; Vacas, Alejandro; Iniesta, Jose; arez, David; Hara, Hirohisa; Published by: \solphys Published on: dec YEAR: 2021   DOI: 10.1007/s11207-021-01915-0 Parker Data Used; Corona; structures; Coronal holes; Jets; Astrophysics - Solar and Stellar Astrophysics |
We present a statistical analysis for the characteristics and spatial evolution of the interplanetary discontinuities (IDs) in the solar wind, from 0.13-0.9 au, by using the Parker Solar Probe measurements on Orbits 4 and 5. We collected 3948 IDs, including 2511 rotational discontinuities (RDs) and 557 tangential discontinuities (TDs), with the remnant unidentified. The statistical results show that (1) the ID occurrence rate decreases from 200 events per day at 0.13 au to 1 event per day at 0.9 au, following a spatial scali ... Liu, Y.~Y.; Fu, H.~S.; Cao, J.~B.; Liu, C.~M.; Wang, Z.; Guo, Z.~Z.; Xu, Y.; Bale, S.~D.; Kasper, J.~C.; Published by: \apj Published on: aug YEAR: 2021   DOI: 10.3847/1538-4357/ac06a1 Interplanetary discontinuities; Solar wind; interplanetary magnetic fields; Magnetohydrodynamics; 820; 1534; 824; 1964; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used |
Large Amplitude Switchback Turbulence: Possible Magnetic Velocity Alignment Structures Switchbacks are widely acknowledged phenomena observed by the Parker Solar Probe and appear to occur in patches. Previous studies focused on the fluctuations at the magnetic reversals. However, the nature of the fluctuations inside the switchbacks remains unknown. Here we utilize the magnetic field data and plasma data measured by the Parker Solar Probe in the first four encounters. We investigate the fluctuations in the switchback intervals of 100 s with $B_R 0$ at every instant and compare them to the fluctuations in the n ... Wu, Honghong; Tu, Chuanyi; Wang, Xin; Yang, Liping; Published by: The Astrophysical Journal Published on: 06/2021 YEAR: 2021   DOI: 10.3847/1538-4357/abec6c Parker Data Used; Solar wind; interplanetary turbulence; 1534; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
In-flight Calibration and Data Reduction for the WISPR Instrument On Board the PSP Mission We present the calibration status and data reduction methodology for the Wide Field Imager for Solar Probe (WISPR) on board the Parker Solar Probe (PSP) mission. In particular, we describe the process for converting a raw image, measured in digital numbers (DN), to a calibrated image, measured in mean solar brightness (MSB). We also discuss details of the on board image processing including bias removal, the linearity of the electronics, pointing, geometric distortion, and photometric calibration using stellar measurements, ... Hess, Phillip; Howard, Russell; Stenborg, Guillermo; Linton, Mark; Vourlidas, Angelos; Thernisien, Arnaud; Colaninno, Robin; Rich, Nathan; Wang, Dennis; Battams, Karl; Kuroda, Natsuha; Published by: Solar Physics Published on: 06/2021 YEAR: 2021   DOI: 10.1007/s11207-021-01847-9 |
Waiting-time distributions of solar flares and coronal mass ejections (CMEs) exhibit power-law-like distribution functions with slopes in the range of ατ ≍ 1.4-3.2, as observed in annual data sets during four solar cycles (1974-2012). We find a close correlation between the waiting-time power-law slope ατ and the sunspot number (SN), i.e., ατ = 1.38 + 0.01 × SN. The waiting-time distribution can be fitted with a Pareto-type function of the form N(τ) = N0 $(\tau _0+\tau )^ ... Aschwanden, Markus; de Wit, Thierry; Published by: The Astrophysical Journal Published on: 05/2021 YEAR: 2021   DOI: 10.3847/1538-4357/abef69 Parker Data Used; Solar wind; solar flares; 1534; 1496; Astrophysics - Solar and Stellar Astrophysics |
This research shows Part II of the Spacecraft Interaction Plasma Software (SPIS) used to model the parker solar probe (PSP) FIELDS instrument and its interactions with the Solar Wind. Flight data were used to run the PSP model and compared with models using past predicted parameters. The effect of voltage biasing between the antenna, its shield, and the spacecraft on the current balance of each surface was investigated at first perihelion (0.16AU). The model data were reduced to I-V curves to find current saturations (analys ... Diaz-Aguado, M.; Bonnell, J.; Bale, S.; Wang, J.; Gruntman, M.; Published by: Journal of Geophysical Research (Space Physics) Published on: 05/2021 YEAR: 2021   DOI: 10.1029/2020JA028689 |
Shi, Chen; Zhao, Jinsong; Huang, Jia; Wang, Tieyan; Wu, Dejin; Chen, Yu; Hu, Qiang; Kasper, Justin; Bale, Stuart; Published by: \apjl Published on: 02/2021 YEAR: 2021   DOI: 10.3847/2041-8213/abdd28 |
2020 |
The Parker Solar Probe (PSP) mission has been studied since 1958. After many iterations and changes in design, the mission was launched on August 12, 2018 (see, https://www.nasa.gov/content/goddard/parker-solar-probe). PSP has completed its 3rd rendezvous with Venus and 6th perihelion passage. Each flyby brings PSP closer to the Sun (eventually to 9.7 solar radii). In October 2020 it flew within 20 solar radii of the solar surface. A goal of the mission is to determine how the solar corona is heated to ∼ a million degrees. ... Goldstein, Melvyn; Ruffolo, D.; Matthaeus, W.~H.; Chhiber, R.; Usmanov, A.~V.; Yang, Y.; Bandyopadhyay, R.; Parashar, T.~N.; DeForest, E.; Wan, M.; Chasapis, A.; Maruca, B.~A.; Velli, M.; Kasper, J.~C.; Published by: Radiation Effects and Defects in Solids Published on: 11/2020 YEAR: 2020   DOI: 10.1080/10420150.2020.1845690 |
Energy Supply for Heating the Slow Solar Wind Observed by Parker Solar Probe between 0.17 and 0.7 au Energy supply sources for the heating process in the slow solar wind remain unknown. The Parker Solar Probe (PSP) mission provides a good opportunity to study this issue. Recently, PSP observations have found that the slow solar wind experiences stronger heating inside 0.24 au. Here for the first time we measure in the slow solar wind the radial gradient of the low-frequency breaks on the magnetic trace power spectra and evaluate the associated energy supply rate. We find that the energy supply rate is consistent with the ob ... Wu, Honghong; Tu, Chuanyi; Wang, Xin; He, Jiansen; Yang, Liping; Published by: The Astrophysical Journal Published on: 11/2020 YEAR: 2020   DOI: 10.3847/2041-8213/abc5b6 Parker Data Used; Slow solar wind; interplanetary turbulence; Solar coronal heating |
Shear-driven Transition to Isotropically Turbulent Solar Wind Outside the Alfv\ en Critical Zone Motivated by prior remote observations of a transition from striated\ solar\ coronal structures to more isotropic "flocculated" fluctuations, we propose that the dynamics of the inner\ solar\ wind just outside the Alfven critical zone, and in the vicinity of the first beta = 1 surface, is powered by the relative velocities of adjacent coronal magnetic flux tubes. We suggest that large-amplitude flow contrasts are magnetically constrained at lower altitude but shear-driven dynamics are triggered as such ... Ruffolo, D.; Matthaeus, W.; Chhiber, R.; Usmanov, A.; Yang, Y.; Bandyopadhyay, R.; Parashar, T.; Goldstein, M.; Deforest, C.; Wan, M.; Chasapis, A.; Maruca, B.; Velli, M.; Kasper, J.; Published by: The Astrophysical Journal Published on: 10/2020 YEAR: 2020   DOI: 10.3847/1538-4357/abb594 |
Using Stereoscopic Observations of Cometary Plasma Tails to Infer Solar Wind Speed Detection of the solar wind speed near the Sun is significant in understanding the heating and acceleration of the solar wind. Cometary plasma tails have long been used as natural probes for solar wind speed; previous solar wind speed estimates via plasma tails, however, were based on comet images from a single viewpoint, and the projection effect may influence the result. Using stereoscopic observations from the Solar Terrestrial Relations Observatory and the Solar and Heliospheric Observatory, we three-dimensionally rec ... Cheng, Long; Zhang, Quanhao; Wang, Yuming; Li, Xiaolei; Liu, Rui; Published by: The Astrophysical Journal Published on: 07/2020 YEAR: 2020   DOI: 10.3847/1538-4357/ab93b6 |
1 2