PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2021

Thin silicon solid-state detectors for energetic particle measurements. Development, characterization, and application on NASA s Parker Solar Probe mission

Context. Silicon solid-state detectors are commonly used for measuring the specific ionization, dE∕dx, in instruments designed for identifying energetic nuclei using the dE∕dx versus total energy technique in space and in the laboratory. The energy threshold and species resolution of the technique strongly depend on the thickness and thickness uniformity of these detectors.
Aims: Research has been carried out to develop processes for fabricating detectors that are thinner than 15 μm, that have a thickness uniform ...

Wiedenbeck, M.; Burnham, J.; Cohen, C.; Cook, W.; Crabill, R.; Cummings, A.; Davis, A.; Kecman, B.; Labrador, A.; Leske, R.; Mewaldt, R.; Rankin, J.; Rusert, M.; Stone, E.; Christian, E.; Goodwin, P.; Link, J.; Nahory, B.; Shuman, S.; von Rosenvinge, T.; Tindall, C.; Black, H.; Bullough, M.; Clarke, N.; Glasson, V.; Greenwood, N.; Hawkins, C.; Johnson, T.; Newton, A.; Richardson, K.; Walsh, S.; Wilburn, C.; Birdwell, B.; Everett, d.; McComas, D.; Weidner, S.; Angold, N.; Schwadron, N.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039754

instrumentation: detectors; Sun: particle emission; acceleration of particles; space vehicles: instruments; Parker Data Used

2020

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

Published by: Astronomy \& Astrophysics      Published on: 09/2020

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

2018

Investigating the Effect of IMF Path Length on Pitch-angle Scattering of Strahl within 1 au

Strahl is the strongly field-aligned, beam-like population of electrons in the solar wind. Strahl width is observed to increase with distance from the Sun, and hence strahl electrons must be subject to in-transit scattering effects. Different energy relations have been both observed and modeled for both strahl width and the width increase with radial distance. Thus, there is much debate regarding what mechanism(s) scatter strahl. In this study, we use a novel method to investigate strahl evolution within 1 au by estimatin ...

Graham, G.; Rae, I.; Owen, C.; Walsh, A.;

Published by: The Astrophysical Journal      Published on: 03/2018

YEAR: 2018     DOI: 10.3847/1538-4357/aaaf1b

parker solar probe; plasmas; scattering; Solar Probe Plus; Solar wind; Sun: heliosphere



  1