Notice:
|
Found 28 entries in the Bibliography.
Showing entries from 1 through 28
2023 |
Triggered ion-acoustic waves are a pair of coupled waves observed in the previously unexplored plasma regime near the Sun. They may be capable of producing important effects on the solar wind. Because this wave mode has not been observed or studied previously and it is not fully understood, the issue of whether it has a natural origin or is an instrumental artifact can be raised. This paper discusses this issue by examining 13 features of the data such as whether the triggered ion-acoustic waves are electrostatic, whether th ... Mozer, Forrest; Bale, Stuart; Kellogg, Paul; Romeo, Orlando; Vasko, Ivan; Verniero, Jaye; Published by: Physics of Plasmas Published on: jun YEAR: 2023   DOI: 10.1063/5.0151423 Parker Data Used; Astrophysics - Solar and Stellar Astrophysics |
Anterograde Collisional Analysis of Solar Wind Ions Owing to its low density and high temperature, the solar wind frequently exhibits strong departures from local thermodynamic equilibrium, which include distinct temperatures for its constituent ions. Prior studies have found that the ratio of the temperatures of the two most abundant ions-protons (ionized hydrogen) and \ensuremath\alpha-particles (ionized helium)-is strongly correlated with the Coulomb collisional age. These previous studies, though, have been largely limited to using observations from single missions. In co ... Johnson, E.; Maruca, B.~A.; McManus, M.; Klein, K.~G.; Lichko, E.~R.; Verniero, J.; Paulson, K.~W.; DeWeese, H.; Dieguez, I.; Qudsi, R.~A.; Kasper, J.; Stevens, M.; Alterman, B.~L.; Wilson, L.~B.; Livi, R.; Rahmati, A.; Larson, D.; Published by: \apj Published on: jun YEAR: 2023   DOI: 10.3847/1538-4357/accc32 Parker Data Used; Solar wind; Collision physics; Plasma physics; 1534; 2065; 2089 |
Parker Solar Probe: Four Years of Discoveries at Solar Cycle Minimum Launched on 12 Aug. 2018, NASA s Parker Solar Probe had completed 13 of its scheduled 24 orbits around the Sun by Nov. 2022. The mission s primary science goal is to determine the structure and dynamics of the Sun s coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Parker Solar Probe returned a treasure trove of science data that far exceeded quality, significance, and quantity expectations, leading to a significant number ... Raouafi, N.~E.; Matteini, L.; Squire, J.; Badman, S.~T.; Velli, M.; Klein, K.~G.; Chen, C.~H.~K.; Matthaeus, W.~H.; Szabo, A.; Linton, M.; Allen, R.~C.; Szalay, J.~R.; Bruno, R.; Decker, R.~B.; Akhavan-Tafti, M.; Agapitov, O.~V.; Bale, S.~D.; Bandyopadhyay, R.; Battams, K.; Ber\vci\vc, L.; Bourouaine, S.; Bowen, T.~A.; Cattell, C.; Chandran, B.~D.~G.; Chhiber, R.; Cohen, C.~M.~S.; Amicis, R.; Giacalone, J.; Hess, P.; Howard, R.~A.; Horbury, T.~S.; Jagarlamudi, V.~K.; Joyce, C.~J.; Kasper, J.~C.; Kinnison, J.; Laker, R.; Liewer, P.; Malaspina, D.~M.; Mann, I.; McComas, D.~J.; Niembro-Hernandez, T.; Nieves-Chinchilla, T.; Panasenco, O.; y, Pokorn\; Pusack, A.; Pulupa, M.; Perez, J.~C.; Riley, P.; Rouillard, A.~P.; Shi, C.; Stenborg, G.; Tenerani, A.; Verniero, J.~L.; Viall, N.; Vourlidas, A.; Wood, B.~E.; Woodham, L.~D.; Woolley, T.; Published by: ßr Published on: feb YEAR: 2023   DOI: 10.1007/s11214-023-00952-4 Parker Data Used; Sun; Corona; Solar wind; plasma; magnetic fields; coronal mass ejections; parker solar probe; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Parker Solar Probe Observations of High Plasma \ensuremath\beta Solar Wind from the Streamer Belt In general, slow solar wind from the streamer belt forms a high plasma \ensuremath\beta equatorial plasma sheet around the heliospheric current sheet (HCS) crossing, namely, the heliospheric plasma sheet (HPS). Current Parker Solar Probe (PSP) observations show that the HCS crossings near the Sun could be full or partial current sheet (PCS) crossings, and they share some common features but also have different properties. In this work, using the PSP observations from encounters 4-10, we identify streamer belt solar wind from ... Huang, Jia; Kasper, J.~C.; Larson, Davin; McManus, Michael; Whittlesey, P.; Livi, Roberto; Rahmati, Ali; Romeo, Orlando; Klein, K.~G.; Sun, Weijie; van der Holst, Bart; Huang, Zhenguang; Jian, Lan; Szabo, Adam; Verniero, J.~L.; Chen, C.~H.~K.; Lavraud, B.; Liu, Mingzhe; Badman, Samuel; Niembro, Tatiana; Paulson, Kristoff; Stevens, M.; Case, A.~W.; Pulupa, Marc; Bale, Stuart; Halekas, J.~S.; Published by: \apjs Published on: apr YEAR: 2023   DOI: 10.3847/1538-4365/acbcd2 Parker Data Used; Slow solar wind; interplanetary magnetic fields; Space plasmas; 1873; 824; 1544; Physics - Space Physics |
Prediction and Verification of Parker Solar Probe Solar Wind Sources at 13.3 R$_\ensuremath\odot$ Drawing connections between heliospheric spacecraft and solar wind sources is a vital step in understanding the evolution of the solar corona into the solar wind and contextualizing in situ timeseries. Furthermore, making advanced predictions of this linkage for ongoing heliospheric missions, such as Parker Solar Probe (Parker), is necessary for achieving useful coordinated remote observations and maximizing scientific return. The general procedure for estimating such connectivity is straightforward (i.e., magnetic field lin ... Badman, S.~T.; Riley, P.; Jones, S.~I.; Kim, T.~K.; Allen, R.~C.; Arge, C.~N.; Bale, S.~D.; Henney, C.~J.; Kasper, J.~C.; Mostafavi, P.; Pogorelov, N.~V.; Raouafi, N.~E.; Stevens, M.~L.; Verniero, J.~L.; Published by: Journal of Geophysical Research (Space Physics) Published on: apr YEAR: 2023   DOI: 10.1029/2023JA031359 Parker Data Used; Corona; Solar wind; parker solar probe; solar wind sources; Alfvèn surface; magnetic field lines; Earth Science; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
2022 |
In Situ Signature of Cyclotron Resonant Heating in the Solar Wind Bowen, Trevor; Chandran, Benjamin; Squire, Jonathan; Bale, Stuart; Duan, Die; Klein, Kristopher; Larson, Davin; Mallet, Alfred; McManus, Michael; Meyrand, Romain; Verniero, Jaye; Woodham, Lloyd; Published by: \prl Published on: oct YEAR: 2022   DOI: 10.1103/PhysRevLett.129.165101 |
The Solar Probe ANalyzer-Ions on the Parker Solar Probe The Solar Probe ANalyzer for Ions (SPAN-I) onboard NASA s Parker Solar Probe spacecraft is an electrostatic analyzer with time-of- flight capabilities that measures the ion composition and three- dimensional distribution function of the thermal corona and solar-wind plasma. SPAN-I measures the energy per charge of ions in the solar wind from 2 eV to 30 keV with a field of view of 247.\textdegree5 \texttimes 120\textdegree while simultaneously separating H$^+$ from He$^++$ to develop 3D velocity distribution functions of indi ... Livi, Roberto; Larson, Davin; Kasper, Justin; Abiad, Robert; Case, A.~W.; Klein, Kristopher; Curtis, David; Dalton, Gregory; Stevens, Michael; Korreck, Kelly; Ho, George; Robinson, Miles; Tiu, Chris; Whittlesey, Phyllis; Verniero, Jaye; Halekas, Jasper; McFadden, James; Marckwordt, Mario; Slagle, Amanda; Abatcha, Mamuda; Rahmati, Ali; McManus, Michael; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac93f5 Parker Data Used; Heliosphere; The Sun; Solar Physics; 711; 1693; 1476 |
Observations of Quiescent Solar Wind Regions with Near-f $_ce$ Wave Activity In situ measurements in the near-Sun solar wind from the Parker Solar Probe have revealed the existence of quiescent solar wind regions: extended regions of solar wind with low-amplitude turbulent magnetic field fluctuations compared to adjacent regions. Identified through the study of harmonic waves near the electron cyclotron frequency (f $_ce$), these quiescent regions are shown to host a variety of plasma waves. The near-f $_ce$ harmonic waves are observed exclusively in quiescent regions, and as such, they can be used a ... Short, Benjamin; Malaspina, David; Halekas, Jasper; Romeo, Orlando; Verniero, J.~L.; Finley, Adam; Kasper, Justin; Rahmati, Ali; Bale, Stuart; Bonnell, John; Case, Anthony; de Wit, Thierry; Goetz, Keith; Goodrich, Katherine; Harvey, Peter; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis; Published by: \apj Published on: nov YEAR: 2022   DOI: 10.3847/1538-4357/ac97e4 Parker Data Used; Solar wind; interplanetary turbulence; Space plasmas; Solar magnetic fields; Heliosphere; 1534; 830; 1544; 1503; 711 |
Ion Kinetics of Plasma Flows: Earth s Magnetosheath versus Solar Wind Revealing the formation, dynamics, and contribution to plasma heating of magnetic field fluctuations in the solar wind is an important task for heliospheric physics and for a general plasma turbulence theory. Spacecraft observations in the solar wind are limited to spatially localized measurements, so that the evolution of fluctuation properties with solar wind propagation is mostly studied via statistical analyses of data sets collected by different spacecraft at various radial distances from the Sun. In this study we inves ... Artemyev, A.~V.; Shi, C.; Lin, Y.; Nishimura, Y.; Gonzalez, C.; Verniero, J.; Wang, X.; Velli, M.; Tenerani, A.; Sioulas, N.; Published by: \apj Published on: nov YEAR: 2022   DOI: 10.3847/1538-4357/ac96e4 Parker Data Used; interplanetary turbulence; Solar wind; 830; 1534 |
We report observations of reconnection exhausts in the Heliospheric Current Sheet (HCS) during Parker Solar Probe Encounters 08 and 07, at 16 R$_s$ and 20 R$_s$, respectively. Heliospheric current sheet (HCS) reconnection accelerated protons to almost twice the solar wind speed and increased the proton core energy by a factor of \ensuremath\sim3, due to the Alfv\ en speed being comparable to the solar wind flow speed at these near-Sun distances. Furthermore, protons were energized to super-thermal energies. During E08, energ ... Phan, T.~D.; Verniero, J.~L.; Larson, D.; Lavraud, B.; Drake, J.~F.; Oieroset, M.; Eastwood, J.~P.; Bale, S.~D.; Livi, R.; Halekas, J.~S.; Whittlesey, P.~L.; Rahmati, A.; Stansby, D.; Pulupa, M.; MacDowall, R.~J.; Szabo, P.~A.; Koval, A.; Desai, M.; Fuselier, S.~A.; Velli, M.; Hesse, M.; Pyakurel, P.~S.; Maheshwari, K.; Kasper, J.~C.; Stevens, J.~M.; Case, A.~W.; Raouafi, N.~E.; Published by: \grl Published on: may YEAR: 2022   DOI: 10.1029/2021GL096986 Parker Data Used; magnetic reconnection; Particle acceleration; Solar wind; parker solar probe; heliospheric current sheet |
Core Electron Heating by Triggered Ion Acoustic Waves in the Solar Wind Perihelion passes on Parker Solar Probe orbits 6-9 have been studied to show that solar wind core electrons emerged from 15 solar radii with a temperature of 55 \ensuremath\pm 5 eV, independent of the solar wind speed, which varied from 300 to 800 km s$^-1$. After leaving 15 solar radii and in the absence of triggered ion acoustic waves at greater distances, the core electron temperature varied with radial distance, R, in solar radii, as 1900R $^-4/3$ eV because of cooling produced by the adiabatic expansion. The coefficient ... Mozer, F.~S.; Bale, S.~D.; Cattell, C.~A.; Halekas, J.; Vasko, I.~Y.; Verniero, J.~L.; Kellogg, P.~J.; Published by: \apjl Published on: mar YEAR: 2022   DOI: 10.3847/2041-8213/ac5520 Parker Data Used; Solar corona; Solar wind; 1483; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
We present observations of \ensuremath\gtrsim10-100 keV nucleon$^-1$ suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track t ... Desai, M.~I.; Mitchell, D.~G.; McComas, D.~J.; Drake, J.~F.; Phan, T.; Szalay, J.~R.; Roelof, E.~C.; Giacalone, J.; Hill, M.~E.; Christian, E.~R.; Schwadron, N.~A.; McNutt, R.~L.; Wiedenbeck, M.~E.; Joyce, C.; Cohen, C.~M.~S.; Davis, A.~J.; Krimigis, S.~M.; Leske, R.~A.; Matthaeus, W.~H.; Malandraki, O.; Mewaldt, R.~A.; Labrador, A.; Stone, E.~C.; Bale, S.~D.; Verniero, J.; Rahmati, A.; Whittlesey, P.; Livi, R.; Larson, D.; Pulupa, M.; MacDowall, R.~J.; Niehof, J.~T.; Kasper, J.~C.; Horbury, T.~S.; Published by: \apj Published on: mar YEAR: 2022   DOI: 10.3847/1538-4357/ac4961 Parker Data Used; The Sun; Solar magnetic reconnection; Interplanetary particle acceleration; interplanetary magnetic fields; Heliosphere; 1693; 1504; 826; 824; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Density and Velocity Fluctuations of Alpha Particles in Magnetic Switchbacks McManus, Michael; Verniero, Jaye; Bale, Stuart; Bowen, Trevor; Larson, Davin; Kasper, Justin; Livi, Roberto; Matteini, Lorenzo; Rahmati, Ali; Romeo, Orlando; Whittlesey, Phyllis; Woolley, Thomas; Published by: \apj Published on: jul YEAR: 2022   DOI: 10.3847/1538-4357/ac6ba3 Parker Data Used; Heliosphere; Solar wind; Space plasmas; 711; 1534; 1544; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Strong Perpendicular Velocity-space Diffusion in Proton Beams Observed by Parker Solar Probe The SWEAP instrument suite on Parker Solar Probe (PSP) has detected numerous proton beams associated with coherent, circularly polarized, ion-scale waves observed by PSP s FIELDS instrument suite. Measurements during PSP Encounters 4-8 revealed pronounced complex shapes in the proton velocity distribution functions (VDFs), in which the tip of the beam undergoes strong perpendicular diffusion, resulting in VDF level contours that resemble a hammerhead. We refer to these proton beams, with their attendant hammerhead fe ... Verniero, J.~L.; Chandran, B.~D.~G.; Larson, D.~E.; Paulson, K.; Alterman, B.~L.; Badman, S.; Bale, S.~D.; Bonnell, J.~W.; Bowen, T.~A.; de Wit, Dudok; Kasper, J.~C.; Klein, K.~G.; Lichko, E.; Livi, R.; McManus, M.~D.; Rahmati, A.; Verscharen, D.; Walters, J.; Whittlesey, P.~L.; Published by: \apj Published on: jan YEAR: 2022   DOI: 10.3847/1538-4357/ac36d5 Parker Data Used; 1544; 23; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Recent in situ observations from the Parker Solar Probe (PSP) mission in the inner heliosphere near perihelia show evidence of ion beams, temperature anisotropies, and kinetic wave activity, which are likely associated with kinetic heating and acceleration processes of the solar wind. In particular, the proton beams were detected by PSP/Solar Probe Analyzers-Ion (SPAN-I) and related magnetic fluctuation spectra associated with ion-scale waves were observed by the FIELDS instrument. We present the ion velocity distribution fu ... Ofman, Leon; Boardsen, Scott; Jian, Lan; Verniero, Jaye; Larson, Davin; Published by: \apj Published on: feb YEAR: 2022   DOI: 10.3847/1538-4357/ac402c Parker Data Used; 1534; 1545; 1544; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Patches of Magnetic Switchbacks and Their Origins Parker Solar Probe (PSP) has shown that the solar wind in the inner heliosphere is characterized by the quasi omnipresence of magnetic switchbacks ( switchback hereinafter), local backward bends of magnetic field lines. Switchbacks also tend to come in patches, with a large-scale modulation that appears to have a spatial scale size comparable to supergranulation on the Sun. Here we inspect data from the first 10 encounters of PSP focusing on different time intervals when clear switchback patches were observed by PSP. We s ... Shi, Chen; Panasenco, Olga; Velli, Marco; Tenerani, Anna; Verniero, Jaye; Sioulas, Nikos; Huang, Zesen; Brosius, A.; Bale, Stuart; Klein, Kristopher; Kasper, Justin; de Wit, Thierry; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Larson, Davin; Livi, Roberto; Case, Anthony; Stevens, Michael; Published by: \apj Published on: aug YEAR: 2022   DOI: 10.3847/1538-4357/ac7c11 Parker Data Used; Solar wind; Solar corona; Solar prominences; interplanetary turbulence; 1534; 1483; 1519; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
2021 |
Triggered Ion-acoustic Waves in the Solar Wind For more than 12 hr beginning on 2021 January 18, continuous narrowband electrostatic emissions were observed on the Parker Solar Probe near 20 solar radii. The observed <1000 Hz frequencies were well below the local ion-plasma frequency. Surprisingly, the emissions consisted of electrostatic wave packets with shock- like envelopes, appearing repetitively at a \raisebox-0.5ex\textasciitilde1.5 Hz rate. This repetitiveness correlated and was in phase with low-frequency electromagnetic fluctuations. The emissions were associat ... Mozer, F.~S.; Vasko, I.~Y.; Verniero, J.~L.; Published by: \apjl Published on: sep YEAR: 2021   DOI: 10.3847/2041-8213/ac2259 Solar Coronal Waves; Solar wind; 1995; 1534; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Parker Data Used |
Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet During three of its first five orbits around the Sun, Parker Solar Probe (PSP) crossed the large-scale heliospheric current sheet (HCS) multiple times and provided unprecedented detailed plasma and field observations of the near-Sun HCS. We report the common detections by PSP of reconnection exhaust signatures in the HCS at heliocentric distances of 29.5-107 solar radii during encounters 1, 4, and 5. Both sunward and antisunward-directed reconnection exhausts were observed. In the sunward reconnection exhausts, PSP detected ... Phan, T.; Lavraud, B.; Halekas, J.; Øieroset, M.; Drake, J.; Eastwood, J.; Shay, M.; Pyakurel, P.; Bale, S.; Larson, D.; Livi, R.; Whittlesey, P.; Rahmati, A.; Pulupa, M.; McManus, M.; Verniero, J.; Bonnell, J.; Schwadron, N.; Stevens, M.; Case, A.; Kasper, J.; MacDowall, R.; Szabo, P.; Koval, A.; Korreck, K.; de Wit, Dudok; Malaspina, D.; Goetz, K.; Harvey, P.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039863 Sun: magnetic fields; Sun: heliosphere; Solar wind; Sun: flares; Parker Data Used |
Wave-particle energy transfer directly observed in an ion cyclotron wave Context. The first studies with Parker Solar Probe (PSP) data have made significant progress toward understanding of the fundamental properties of ion cyclotron waves in the inner heliosphere. The survey mode particle measurements of PSP, however, did not make it possible to measure the coupling between electromagnetic fields and particles on the time scale of the wave periods. Vech, D.; Martinovic, M.; Klein, K.; Malaspina, D.; Bowen, T.; Verniero, J.; Paulson, K.; de Wit, Dudok; Kasper, J.; Huang, J.; Stevens, M.; Case, A.; Korreck, K.; Mozer, F.; Goodrich, K.; Bale, S.; Whittlesey, P.; Livi, R.; Larson, D.; Pulupa, M.; Bonnell, J.; Harvey, P.; Goetz, K.; MacDowall, R.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039296 Solar wind; waves; turbulence; Physics - Space Physics; Physics - Plasma Physics; Parker Data Used |
Alfvenic versus non-Alfvenic turbulence in the inner heliosphere as observed by Parker Solar Probe Context. Parker Solar Probe (PSP) measures the magnetic field and plasma parameters of the solar wind at unprecedentedly close distances to the Sun. These data provide great opportunities to study the early-stage evolution of magnetohydrodynamic (MHD) turbulence in the solar wind. Shi, C.; Velli, M.; Panasenco, O.; Tenerani, A.; eville, V.; Bale, S.; Kasper, J.; Korreck, K.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Pulupa, M.; Case, A.; Larson, D.; Verniero, J.; Livi, R.; Stevens, M.; al., et; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: "10.1051/0004-6361/202039818" |
Unraveling the physics of the entire turbulent cascade of energy in space and astrophysical plasmas from the injection of energy at large scales to the dissipation of that energy into plasma heat at small scales, represents an overarching, open question in heliophysics and astrophysics. The fast cadence and high phase space resolution of particle velocity distribution measurements on modern spacecraft missions, such as the recently launched Parker Solar Probe, presents exciting new opportunities for identifying turbulent dis ... Verniero, J.; Howes, G.; Stewart, D.; Klein, K.; Published by: Journal of Geophysical Research (Space Physics) Published on: 05/2021 YEAR: 2021   DOI: 10.1029/2020JA028361 Solar wind; space plasma; turbulence; wave particle interaction; Parker Data Used |
PATCH: Particle Arrival Time Correlation for Heliophysics The ability to understand the fundamental nature of the physics that governs the heliosphere requires spacecraft instrumentation to measure energy transfer at kinetic scales. This translates to a time cadence resolving the proton kinetic timescales, typically of the order of the proton gyrofrequency. The downlinked survey mode data from modern spacecraft are often much lower resolution than this criterion, meaning that the higher resolution, burst mode data must be captured to study an event at kinetic time scales. Telemetry ... Verniero, J.; Howes, G.; Stewart, D.; Klein, K.; Published by: Journal of Geophysical Research (Space Physics) Published on: 05/2021 YEAR: 2021   DOI: 10.1029/2020JA028940 plasma turbulence; Solar wind; spacecraft Instrumentation; wave particle interaction; Parker Data Used |
The hot and diffuse nature of the Sun s extended atmosphere allows it to persist in non-equilibrium states for long enough that wave-particle instabilities can arise and modify the evolution of the expanding solar wind. Determining which instabilities arise, and how significant a role they play in governing the dynamics of the solar wind, has been a decades-long process involving in situ observations at a variety of radial distances. With new measurements from the Parker Solar Probe (PSP), we can study what wave modes are dr ... Klein, K.; Verniero, J.; Alterman, B.; Bale, S.; Case, A.; Kasper, J.; Korreck, K.; Larson, D.; Lichko, E.; Livi, R.; McManus, M.; Martinovic, M.; Rahmati, A.; Stevens, M.; Whittlesey, P.; Published by: The Astrophysical Journal Published on: 03/2021 YEAR: 2021   DOI: 10.3847/1538-4357/abd7a0 Parker Data Used; Solar wind; Space plasmas; Plasma physics; 1534; 1544; 2089; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
2020 |
Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere Context. Switchbacks are discrete angular deflections in the solar wind magnetic field that have been observed throughout the heliosphere. Recent observations by Parker Solar Probe (PSP) have revealed the presence of patches of switchbacks on the scale of hours to days, separated by quieter radial fields. \ Aims: We aim to further diagnose the origin of these patches using measurements of proton temperature anisotropy that can illuminate possible links to formation processes in the solar corona. \ Methods: We fitted 3D bi- ... Woodham, L.; Horbury, T.; Matteini, L.; Woolley, T.; Laker, R.; Bale, S.; Nicolaou, G.; Stawarz, J.; Stansby, D.; Hietala, H.; Larson, D.; Livi, R.; Verniero, J.; McManus, M.; Kasper, J.; Korreck, K.; Raouafi, N.; Moncuquet, M.; Pulupa, M.; Published by: Astronomy and Astrophysics Published on: jun YEAR: 2020   DOI: "10.1051/0004-6361/202039415" |
The Electromagnetic Signature of Outward Propagating Ion-scale Waves First results from the Parker Solar Probe (PSP) mission have revealed ubiquitous coherent ion-scale waves in the inner heliosphere, which are signatures of kinetic wave-particle interactions and fluid instabilities. However, initial studies of the circularly polarized ion-scale waves observed by PSP have only thoroughly analyzed magnetic field signatures, precluding a determination of solar wind frame propagation direction and intrinsic wave polarization. A comprehensive determination of wave properties requires measureme ... Bowen, Trevor; Bale, Stuart; Bonnell, J.; Larson, Davin; Mallet, Alfred; McManus, Michael; Mozer, Forrest; Pulupa, Marc; Vasko, Ivan; Verniero, J.; Published by: The Astrophysical Journal Published on: 08/2020 YEAR: 2020   DOI: 10.3847/1538-4357/ab9f37 Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Plasma astrophysics; Plasma physics; Solar Probe Plus; Solar wind; Space plasmas |
Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves Parker Solar Probe (PSP), NASA\textquoterights latest and closest mission to the Sun, is on a journey to investigate fundamental enigmas of the inner heliosphere. This paper reports initial observations made by the Solar Probe Analyzer for Ions (SPAN-I), one of the instruments in the Solar Wind Electrons Alphas and Protons instrument suite. We address the presence of secondary proton beams in concert with ion-scale waves observed by FIELDS, the electromagnetic fields instrument suite. We show two events from PSP\textquote ... Verniero, J.; Larson, D.; Livi, R.; Rahmati, A.; McManus, M.; Pyakurel, Sharma; Klein, K.; Bowen, T.; Bonnell, J.; Alterman, B.; Whittlesey, P.; Malaspina, David; Bale, S.; Kasper, J.; Case, A.; Goetz, K.; Harvey, P.; Korreck, K.; MacDowall, R.; Pulupa, M.; Stevens, M.; de Wit, Dudok; Published by: The Astrophysical Journal Supplement Series Published on: 05/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab86af Alfv\ en waves; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Plasma physics; Solar Probe Plus; Solar wind; Space plasmas |
Ion-scale Electromagnetic Waves in the Inner Heliosphere Understanding the physical processes in the solar wind and corona that actively contribute to heating, acceleration, and dissipation is a primary objective of NASA\textquoterights Parker Solar Probe (PSP) mission. Observations of circularly polarized electromagnetic waves at ion scales suggest that cyclotron resonance and wave-particle interactions are dynamically relevant in the inner heliosphere. A wavelet-based statistical study of circularly polarized events in the first perihelion encounter of PSP demonstrates that t ... Bowen, Trevor; Mallet, Alfred; Huang, Jia; Klein, Kristopher; Malaspina, David; Stevens, Michael; Bale, Stuart; Bonnell, J.; Case, Anthony; Chandran, Benjamin; Chaston, C.; Chen, Christopher; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Howes, Gregory; Kasper, J.; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; McManus, Michael; Pulupa, Marc; Verniero, J.; Whittlesey, Phyllis; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab6c65 Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
The Solar Probe ANalyzers\textemdashElectrons on the Parker Solar Probe Electrostatic analyzers of different designs have been used since the earliest days of the space age, beginning with the very earliest solar-wind measurements made by Mariner 2 en route to Venus in 1962. The Parker Solar Probe (PSP) mission, NASA\textquoterights first dedicated mission to study the innermost reaches of the heliosphere, makes its thermal plasma measurements using a suite of instruments called the Solar Wind Electrons, Alphas, and Protons (SWEAP) investigation. SWEAP\textquoterights electron PSP Analyzer (S ... Whittlesey, Phyllis; Larson, Davin; Kasper, Justin; Halekas, Jasper; Abatcha, Mamuda; Abiad, Robert; Berthomier, M.; Case, A.; Chen, Jianxin; Curtis, David; Dalton, Gregory; Klein, Kristopher; Korreck, Kelly; Livi, Roberto; Ludlam, Michael; Marckwordt, Mario; Rahmati, Ali; Robinson, Miles; Slagle, Amanda; Stevens, M.; Tiu, Chris; Verniero, J.; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab7370 Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar coronal heating; Solar instruments; Solar Probe Plus; Solar wind; Space plasmas |
1