PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 13 entries in the Bibliography.


Showing entries from 1 through 13


2023

Interchange reconnection as the source of the fast solar wind within coronal holes

The fast solar wind that fills the heliosphere originates from deep within regions of open magnetic field on the Sun called coronal holes . The energy source responsible for accelerating the plasma is widely debated; however, there is evidence that it is ultimately magnetic in nature, with candidate mechanisms including wave heating$^1,2$ and interchange reconnection$^3-5$. The coronal magnetic field near the solar surface is structured on scales associated with supergranulation convection cells, whereby descending flows ...

Bale, S.~D.; Drake, J.~F.; McManus, M.~D.; Desai, M.~I.; Badman, S.~T.; Larson, D.~E.; Swisdak, M.; Horbury, T.~S.; Raouafi, N.~E.; Phan, T.; Velli, M.; McComas, D.~J.; Cohen, C.~M.~S.; Mitchell, D.; Panasenco, O.; Kasper, J.~C.;

Published by: \nat      Published on: jun

YEAR: 2023     DOI: 10.1038/s41586-023-05955-3

Parker Data Used; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

2022

Slow Shock Formation Upstream of Reconnecting Current Sheets

The formation, development, and impact of slow shocks in the upstream regions of reconnecting current layers are explored. Slow shocks have been documented in the upstream regions of magnetohydrodynamic (MHD) simulations of magnetic reconnection as well as in similar simulations with the kglobal kinetic macroscale simulation model. They are therefore a candidate mechanism for preheating the plasma that is injected into the current layers that facilitate magnetic energy release in solar flares. Of particular interest is their ...

Arnold, H.; Drake, J.~F.; Swisdak, M.; Guo, F.; Dahlin, J.~T.; Zhang, Q.;

Published by: \apj      Published on: feb

YEAR: 2022     DOI: 10.3847/1538-4357/ac423b

Parker Data Used; 1504; 2086; 2089; 1544; Physics - Plasma Physics; Physics - Space Physics

Flux Rope Merging and the Structure of Switchbacks in the Solar Wind

A major discovery of Parker Solar Probe (PSP) was the presence of large numbers of localized increases in the radial solar wind speed and associated sharp deflections of the magnetic field- switchbacks (SBs). A possible generation mechanism of SBs is through magnetic reconnection between open and closed magnetic flux near the solar surface, termed interchange reconnection, that leads to the ejection of flux ropes (FRs) into the solar wind. Observations also suggest that SBs undergo merging, consistent with an FR picture of t ...

Agapitov, O.~V.; Drake, J.~F.; Swisdak, M.; Bale, S.~D.; Horbury, T.~S.; Kasper, J.~C.; MacDowall, R.~J.; Mozer, F.~S.; Phan, T.~D.; Pulupa, M.; Raouafi, N.~E.; Velli, M.;

Published by: \apj      Published on: feb

YEAR: 2022     DOI: 10.3847/1538-4357/ac4016

Parker Data Used; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Scaling of Electron Heating by Magnetization During Reconnection and Applications to Dipolarization Fronts and Super-Hot Solar Flares

Electron ring velocity space distributions have previously been seen in numerical simulations of magnetic reconnection exhausts and have been suggested to be caused by the magnetization of the electron outflow jet by the compressed reconnected magnetic fields

Barbhuiya, Hasan; Cassak, P.~A.; Shay, M.~A.; Roytershteyn, Vadim; Swisdak, M.; Caspi, Amir; Runov, Andrei; Liang, Haoming;

Published by: Journal of Geophysical Research (Space Physics)      Published on: aug

YEAR: 2022     DOI: 10.1029/2022JA030610

Parker Data Used; magnetic reconnection; magnetotail; hot solar flares; electron ring distributions; dipolarization fronts; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

2021

Electron Acceleration during Macroscale Magnetic Reconnection

The first self-consistent simulations of electron acceleration during magnetic reconnection in a macroscale system are presented. Consistent with solar flare observations, the spectra of energetic electrons take the form of power laws that extend more than two decades in energy. The drive mechanism for these nonthermal electrons is Fermi reflection in growing and merging magnetic flux ropes. A strong guide field suppresses the production of nonthermal electrons by weakening the Fermi drive mechanism. For a weak guide field t ...

Arnold, H.; Drake, J.; Swisdak, M.; Guo, F.; Dahlin, J.; Chen, B.; Fleishman, G.; Glesener, L.; Kontar, E.; Phan, T.; Shen, C.;

Published by: Physical Review Letters      Published on: 04/2021

YEAR: 2021     DOI: 10.1103/PhysRevLett.126.135101

Parker Data Used; Physics - Plasma Physics; Astrophysics - High Energy Astrophysical Phenomena

2020

Switchbacks as signatures of magnetic flux ropes generated by interchange reconnection in the corona

The structure of magnetic flux ropes injected into the solar wind during reconnection in the coronal atmosphere is explored with particle-in-cell simulations and compared with in situ measurements of magnetic switchbacks from the Parker Solar Probe. We suggest that multi-x-line reconnection between open and closed flux in the corona injects flux ropes into the solar wind and that these flux ropes convect outward over long distances before eroding due to reconnection. Simulations that explore the magnetic structure of flu ...

Drake, J.; Agapitov, A.; Swisdak, M.; Badman, S.; Bale, S.; Horbury, T.; Kasper, Justin; MacDowall, R.; Mozer, F.; Phan, T.; Pulupa, M.; Szabo, A.; Velli, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039432"

Parker Data Used; parker solar probe; Solar Probe Plus

2019

Scattering of Energetic Electrons by Heat-flux-driven Whistlers in Flares

Roberg-Clark, G.~T.; Agapitov, O.; Drake, J.~F.; Swisdak, M.;

Published by: \apj      Published on: 12/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab5114

Parker Data Used; solar flares; Plasma physics; 1496; 2089; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Large-scale parallel electric fields and return currents in a global simulation model

Arnold, H.; Drake, J.~F.; Swisdak, M.; Dahlin, J.;

Published by: Physics of Plasmas      Published on: 10/2019

YEAR: 2019     DOI: 10.1063/1.5120373

Parker Data Used; Physics - Plasma Physics; Physics - Space Physics

Instabilities and turbulence in low-\ensuremath\beta guide field reconnection exhausts with kinetic Riemann simulations

Zhang, Qile; Drake, J.~F.; Swisdak, M.;

Published by: Physics of Plasmas      Published on: 10/2019

YEAR: 2019     DOI: 10.1063/1.5121782

Parker Data Used; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Particle heating and energy partition in low-\ensuremath\beta guide field reconnection with kinetic Riemann simulations

Zhang, Qile; Drake, J.~F.; Swisdak, M.;

Published by: Physics of Plasmas      Published on: 07/2019

YEAR: 2019     DOI: 10.1063/1.5104352

Parker Data Used; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

A computational model for exploring particle acceleration during reconnection in macroscale systems

Drake, J.~F.; Arnold, H.; Swisdak, M.; Dahlin, J.~T.;

Published by: Physics of Plasmas      Published on: 01/2019

YEAR: 2019     DOI: 10.1063/1.5058140

Parker Data Used; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - High Energy Astrophysical Phenomena; Physics - Plasma Physics

2014

DYNAMICS OF DOUBLE LAYERS, ION ACCELERATION, AND HEAT FLUX SUPPRESSION DURING SOLAR FLARES

Observations of flare-heated electrons in the corona typically suggest confinement of electrons. The confinement mechanism, however, remains unclear. The transport of coronal hot electrons into ambient plasma was recently investigated by particle-in-cell (PIC) simulations. Electron transport was significantly suppressed by the formation of a highly localized, nonlinear electrostatic potential in the form of a double layer (DL). In this work large-scale PIC simulations are performed to explore the dynamics of DLs in larger ...

Li, T.; Drake, J.; Swisdak, M.;

Published by: The Astrophysical Journal      Published on: 09/2014

YEAR: 2014     DOI: 10.1088/0004-637X/793/1/7

acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: flares

2013

von K\ arm\ an Energy Decay and Heating of Protons and Electrons in a Kinetic Turbulent Plasma

Wu, P.; Wan, M.; Matthaeus, W.~H.; Shay, M.~A.; Swisdak, M.;

Published by: \prl      Published on: 09/2013

YEAR: 2013     DOI: 10.1103/PhysRevLett.111.121105

Parker Data Used; 95.30.Qd; 94.05.Lk; 96.50.Ci; Magnetohydrodynamics and plasmas; turbulence; Solar wind plasma; sources of solar wind; Physics - Plasma Physics; Physics - Space Physics



  1