Notice:
|
Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2023 |
The S-Web Origin of Composition Enhancement in the Slow-to-moderate Speed Solar Wind Connecting the solar wind observed throughout the heliosphere to its origins in the solar corona is one of the central aims of heliophysics. The variability in the magnetic field, bulk plasma, and heavy ion composition properties of the slow wind are thought to result from magnetic reconnection processes in the solar corona. We identify regions of enhanced variability and composition in the solar wind from 2003 April 15 to May 13 (Carrington Rotation 2002), observed by the Wind and Advanced Composition Explorer spacecraft, a ... Lynch, B.~J.; Viall, N.~M.; Higginson, A.~K.; Zhao, L.; Lepri, S.~T.; Sun, X.; Published by: \apj Published on: may YEAR: 2023   DOI: 10.3847/1538-4357/acc38c Parker Data Used; Slow solar wind; Solar magnetic reconnection; Space plasmas; interplanetary turbulence; Solar Physics; Solar magnetic fields; Heliosphere; 1873; 1504; 1544; 830; 1476; 1503; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Turbulent magnetic reconnection generated by intense lasers Turbulent magnetic reconnection is believed to occur in astrophysical plasmas, and it has been suggested to be a trigger of solar flares. It often occurs in long stretched and fragmented current sheets. Recent observations by the Parker Solar Probe, the Solar Dynamics Observatory and in situ satellite missions agree with signatures expected from turbulent reconnection. However, the underlying mechanisms, including how magnetic energy stored in the Sun s magnetic field is dissipated, remain unclear. Here we demonstrate turbul ... Ping, Yongli; Zhong, Jiayong; Wang, Xiaogang; Han, Bo; Sun, Wei; Zhang, Yapeng; Yuan, Dawei; Xing, Chunqing; Wang, Jianzhao; Liu, Zhengdong; Zhang, Zhe; Qiao, Bin; Zhang, Hua; Li, Yutong; Zhu, Jianqiang; Zhao, Gang; Zhang, Jie; Published by: Nature Physics Published on: feb YEAR: 2023   DOI: 10.1038/s41567-022-01855-x |
Parker Solar Probe Observations of High Plasma \ensuremath\beta Solar Wind from the Streamer Belt In general, slow solar wind from the streamer belt forms a high plasma \ensuremath\beta equatorial plasma sheet around the heliospheric current sheet (HCS) crossing, namely, the heliospheric plasma sheet (HPS). Current Parker Solar Probe (PSP) observations show that the HCS crossings near the Sun could be full or partial current sheet (PCS) crossings, and they share some common features but also have different properties. In this work, using the PSP observations from encounters 4-10, we identify streamer belt solar wind from ... Huang, Jia; Kasper, J.~C.; Larson, Davin; McManus, Michael; Whittlesey, P.; Livi, Roberto; Rahmati, Ali; Romeo, Orlando; Klein, K.~G.; Sun, Weijie; van der Holst, Bart; Huang, Zhenguang; Jian, Lan; Szabo, Adam; Verniero, J.~L.; Chen, C.~H.~K.; Lavraud, B.; Liu, Mingzhe; Badman, Samuel; Niembro, Tatiana; Paulson, Kristoff; Stevens, M.; Case, A.~W.; Pulupa, Marc; Bale, Stuart; Halekas, J.~S.; Published by: \apjs Published on: apr YEAR: 2023   DOI: 10.3847/1538-4365/acbcd2 Parker Data Used; Slow solar wind; interplanetary magnetic fields; Space plasmas; 1873; 824; 1544; Physics - Space Physics |
2017 |
The Radio Frequency Spectrometer (RFS) is a two-channel digital receiver and spectrometer, which will make remote sensing observations of radio waves and in situ measurements of electrostatic and electromagnetic fluctuations in the solar wind. A part of the FIELDS suite for Solar Probe Plus (SPP), the RFS is optimized for measurements in the inner heliosphere, where solar radio bursts are more intense and the plasma frequency is higher compared to previous measurements at distances of 1 AU or greater. The inputs to the RF ... Pulupa, M.; Bale, S.; Bonnell, J.; Bowen, T.; Carruth, N.; Goetz, K.; Gordon, D.; Harvey, P.; Maksimovic, M.; inez-Oliveros, J.; Moncuquet, M.; Saint-Hilaire, P.; Seitz, D.; Sundkvist, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2017 YEAR: 2017   DOI: 10.1002/2016JA023345 electric field; FIELDS; magnetic field; Parker Data Used; parker solar probe; quasi-thermal noise; radio; Solar Probe Plus |
1