PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 16 entries in the Bibliography.


Showing entries from 1 through 16


2022

The Kinetic Expansion of Solar-wind Electrons: Transport Theory and Predictions for the Very Inner Heliosphere

We propose a transport theory for the kinetic evolution of solar-wind electrons in the heliosphere. We derive a gyro-averaged kinetic transport equation that accounts for the spherical expansion of the solar wind and the geometry of the Parker spiral magnetic field. To solve our three-dimensional kinetic equation, we develop a mathematical approach that combines the Crank-Nicolson scheme in velocity space and a finite-difference Euler scheme in configuration space. We initialize our model with isotropic electron distribution ...

Jeong, Seong-Yeop; Verscharen, Daniel; Vocks, Christian; Abraham, Joel; Owen, Christopher; Wicks, Robert; Fazakerley, Andrew; Stansby, David; Ber\vci\vc, Laura; Nicolaou, Georgios; Rueda, Jeffersson; Bakrania, Mayur;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4805

Parker Data Used; Solar wind; Space plasmas; Heliosphere; Theoretical models; 1534; 1544; 711; 2107; Physics - Space Physics

The Stability of the Electron Strahl against the Oblique Fast-magnetosonic/Whistler Instability in the Inner Heliosphere

We analyze the micro-kinetic stability of the electron strahl in the solar wind depending on heliocentric distance. The oblique fast- magnetosonic/whistler (FM/W) instability has emerged in the literature as a key candidate mechanism for the effective scattering of the electron strahl into the electron halo population. Using data from the Parker Solar Probe (PSP) and Helios, we compare the measured strahl properties with the analytical thresholds for the oblique FM/W instability in the low- and high-\ensuremath\beta $_\ensur ...

Jeong, Seong-Yeop; Abraham, Joel; Verscharen, Daniel; Ber\vci\vc, Laura; Stansby, David; Nicolaou, Georgios; Owen, Christopher; Wicks, Robert; Fazakerley, Andrew; Rueda, Jeffersson; Bakrania, Mayur;

Published by: \apjl      Published on: feb

YEAR: 2022     DOI: 10.3847/2041-8213/ac4dff

Parker Data Used; 1534; 1544; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

2021

Parker Solar Probe Enters the Magnetically Dominated Solar Corona

The high temperatures and strong magnetic fields of the solar corona form streams of solar wind that expand through the Solar System into interstellar space. At 09:33 UT on 28 April 2021 Parker Solar Probe entered the magnetized atmosphere of the Sun 13 million km above the photosphere, crossing below the Alfv\ en critical surface for five hours into plasma in casual contact with the Sun with an Alfv\ en Mach number of 0.79 and magnetic pressure dominating both ion and electron pressure. The spectrum of turbulence below the ...

Kasper, J.~C.; Klein, K.~G.; Lichko, E.; Huang, Jia; Chen, C.~H.~K.; Badman, S.~T.; Bonnell, J.; Whittlesey, P.~L.; Livi, R.; Larson, D.; Pulupa, M.; Rahmati, A.; Stansby, D.; Korreck, K.~E.; Stevens, M.; Case, A.~W.; Bale, S.~D.; Maksimovic, M.; Moncuquet, M.; Goetz, K.; Halekas, J.~S.; Malaspina, D.; Raouafi, Nour; Szabo, A.; MacDowall, R.; Velli, Marco; de Wit, Thierry; Zank, G.~P.;

Published by: \prl      Published on: dec

YEAR: 2021     DOI: 10.1103/PhysRevLett.127.255101

Parker Data Used

The angular-momentum flux in the solar wind observed during Solar Orbiter s first orbit

\ Aims: We present the first measurements of the angular- momentum flux in the solar wind recorded by the Solar Orbiter spacecraft. Our aim is to validate these measurements to support future studies of the Sun s angular-momentum loss. \ Methods: We combined 60-min averages of the proton bulk moments and the magnetic field measured by the Solar Wind Analyser and the magnetometer onboard Solar Orbiter. We calculated the angular-momentum flux per solid-angle element using data from the first orbit of the mission s cruise phase ...

Verscharen, Daniel; Stansby, David; Finley, Adam; Owen, Christopher; Horbury, Timothy; Maksimovic, Milan; Velli, Marco; Bale, Stuart; Louarn, Philippe; Fedorov, Andrei; Bruno, Roberto; Livi, Stefano; Khotyaintsev, Yuri; Vecchio, Antonio; Lewis, Gethyn; Anekallu, Chandrasekhar; Kelly, Christopher; Watson, Gillian; Kataria, Dhiren; Brien, Helen; Evans, Vincent; Angelini, Virginia; SWA, MAG; Teams, RPW;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140956

magnetohydrodynamics (MHD); plasmas; Sun: magnetic fields; Solar wind; stars: rotation; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

2020

Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere

Context. Switchbacks are discrete angular deflections in the solar wind magnetic field that have been observed throughout the heliosphere. Recent observations by Parker Solar Probe (PSP) have revealed the presence of patches of switchbacks on the scale of hours to days, separated by quieter radial fields. \ Aims: We aim to further diagnose the origin of these patches using measurements of proton temperature anisotropy that can illuminate possible links to formation processes in the solar corona. \ Methods: We fitted 3D bi- ...

Woodham, L.; Horbury, T.; Matteini, L.; Woolley, T.; Laker, R.; Bale, S.; Nicolaou, G.; Stawarz, J.; Stansby, D.; Hietala, H.; Larson, D.; Livi, R.; Verniero, J.; McManus, M.; Kasper, J.; Korreck, K.; Raouafi, N.; Moncuquet, M.; Pulupa, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039415"

Parker Data Used; parker solar probe; Solar Probe Plus

Sensitivity of solar wind mass flux to coronal temperature

Solar wind models predict that the mass flux carried away from the Sun in the solar wind should be extremely sensitive to the temperature in the corona, where the solar wind is accelerated. We perform a direct test of this prediction in coronal holes and active regions using a combination of in situ and remote sensing observations. For coronal holes, a 50\% increase in temperature from 0.8 to 1.2 MK is associated with a tripling of the coronal mass flux. This trend is maintained within active regions at temperatures over 2 M ...

Stansby, D.; Bercic, L.; Matteini, L.; Owen, C.; French, R.; Baker, D.; Badman, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039789"

Parker Data Used; parker solar probe; Solar Probe Plus

Prediction of the In Situ Coronal Mass Ejection Rate for Solar Cycle 25: Implications for Parker Solar Probe In Situ Observations

The Parker Solar Probe (PSP) and Solar Orbiter missions are designed to make groundbreaking observations of the Sun and interplanetary space within this decade. We show that a particularly interesting in situ observation of an interplanetary coronal mass ejection (ICME) by PSP may arise during close solar flybys (<0.1 au). During these times, the same magnetic flux rope inside an ICME could be observed in situ by PSP twice, by impacting its frontal part as well as its leg. Investigating the odds of this situation, we forecas ...

Möstl, Christian; Weiss, Andreas; Bailey, Rachel; Reiss, Martin; Amerstorfer, Tanja; Hinterreiter, Jürgen; Bauer, Maike; McIntosh, Scott; Lugaz, No\; Stansby, David;

Published by: The Astrophysical Journal      Published on: 11/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb9a1

Solar coronal mass ejection; Solar storm; Ejecta; space weather; Solar system; Solar wind; Solar Physics; interplanetary magnetic fields; Solar magnetic fields

Magnetic Connectivity of the Ecliptic Plane within 0.5 au: Potential Field Source Surface Modeling of the First Parker Solar Probe Encounter

We compare magnetic field measurements taken by the FIELDS instrument on board Parker Solar Probe (PSP) during its first solar encounter to predictions obtained by potential field source surface (PFSS) modeling. Ballistic propagation is used to connect the spacecraft to the source surface. Despite the simplicity of the model, our results show striking agreement with PSP\textquoterights first observations of the heliospheric magnetic field from ̃0.5 au (107.5 R) down to 0.16 au (35.7 R). Furthe ...

Badman, Samuel; Bale, Stuart; Oliveros, Juan; Panasenco, Olga; Velli, Marco; Stansby, David; Buitrago-Casas, Juan; eville, Victor; Bonnell, John; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab4da7

Parker Data Used; parker solar probe; Solar Probe Plus

Highly Alfv\ enic slow solar wind at 0.3 au during a solar minimum: Helios insights for Parker Solar Probe and Solar Orbiter

Alfv\ enic fluctuations in solar wind are an intrinsic property of fast streams, while slow intervals typically have a very low degree of Alfv\ enicity, with much more variable parameters. However, sometimes a slow wind can be highly Alfv\ enic. Here we compare three different regimes of solar wind, in terms of Alfv\ enic content and spectral properties, during a minimum phase of the solar activity and at 0.3 au. We show that fast and Alfv\ enic slow intervals share some common characteristics. This would suggest a simila ...

Perrone, D.; D\textquoterightAmicis, R.; De Marco, R.; Matteini, L.; Stansby, D.; Bruno, R.; Horbury, T.;

Published by: Astronomy \& Astrophysics      Published on: 01/2020

YEAR: 2020     DOI: 10.1051/0004-6361/201937064

parker solar probe; plasmas; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere; turbulence

2019

Highly structured slow solar wind emerging from an equatorial coronal hole

During the solar minimum, when the Sun is at its least active, the solar wind is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfv\ enic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain; theories and observations suggest that they may originate at the tips of ...

Bale, S.; Badman, S.; Bonnell, J.; Bowen, T.; Burgess, D.; Case, A.; Cattell, C.; Chandran, B.; Chaston, C.; Chen, C.; Drake, J.; de Wit, Dudok; Eastwood, J.; Ergun, R.; Farrell, W.; Fong, C.; Goetz, K.; Goldstein, M.; Goodrich, K.; Harvey, P.; Horbury, T.; Howes, G.; Kasper, J.; Kellogg, P.; Klimchuk, J.; Korreck, K.; Krasnoselskikh, V.; Krucker, S.; Laker, R.; Larson, D.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Martinez-Oliveros, J.; McComas, D.; Meyer-Vernet, N.; Moncuquet, M.; Mozer, F.; Phan, T.; Pulupa, M.; Raouafi, N.; Salem, C.; Stansby, D.; Stevens, M.; Szabo, A.; Velli, M.; Woolley, T.; Wygant, J.;

Published by: Nature      Published on: 12/2019

YEAR: 2019     DOI: 10.1038/s41586-019-1818-7

Parker Data Used; parker solar probe; Solar Probe Plus

Thermodynamics of pure fast solar wind: radial evolution of the temperature\textendashspeed relationship in the inner heliosphereABSTRACT

A strong correlation between speed and proton temperature has been observed, across many years, on hourly averaged measurements in the solar wind. Here, we show that this relationship is also observed at a smaller scale on intervals of a few days, within a single stream. Following the radial evolution of a well-defined stream of coronal-hole plasma, we show that the temperature-speed (T-V) relationship evolves with distance, implying that the T-V relationship at 1 au cannot be used as a proxy for that near the Sun. We sug ...

Perrone, Denise; Stansby, D; Horbury, T; Matteini, L;

Published by: Monthly Notices of the Royal Astronomical Society      Published on: 09/2019

YEAR: 2019     DOI: 10.1093/mnras/stz1877

parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere

Towards Construction of a Solar Wind Reanalysis Dataset: Application to the First Perihelion Pass of Parker Solar Probe

Accurate reconstruction of global solar-wind structure is essential for connecting remote and in situ observations of solar plasma, and hence understanding formation and release of solar wind. Information can routinely be obtained from photospheric magnetograms, via coronal and solar-wind modelling, and directly from in situ observations, typically at large heliocentric distances (most commonly near 1 AU). Magnetogram-constrained modelling has the benefit of reconstructing global solar-wind structure, but with relatively lar ...

Owens, Mathew; Lang, Matthew; Riley, Pete; Stansby, David;

Published by: SOLAR PHYSICS      Published on: 06/2019

YEAR: 2019     DOI: 10.1007/s11207-019-1479-6

Parker Data Used

2018

A New Inner Heliosphere Proton Parameter Dataset from the Helios Mission

In the near future, Parker Solar Probe and Solar Orbiter will provide the first comprehensive in-situ measurements of the solar wind in the inner heliosphere since the Helios mission in the 1970s. We describe a reprocessing of the original Helios ion distribution functions to provide reliable and reproducible data to characterise the proton core population of the solar wind in the inner heliosphere. A systematic fitting of bi-Maxwellian distribution functions was performed to the raw Helios ion distribution function data ...

Stansby, David; Salem, Chadi; Matteini, Lorenzo; Horbury, Timothy;

Published by: Solar Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1007/s11207-018-1377-3

Astrophysics - Solar and Stellar Astrophysics; Heliosphere; Inner heliosphere; parker solar probe; Physics - Space Physics; Solar Probe Plus; Solar wind; Solar wind protons

Short, large-amplitude speed enhancements in the near-Sunfast solar wind

We report the presence of intermittent, short discrete enhancements in plasma speed in the near-Sun high-speed solar wind. Lasting tens of seconds to minutes in spacecraft measurements at 0.3 au, speeds inside these enhancements can reach 1000 km s-1, corresponding to a kinetic energy up to twice that of the bulk high-speed solar wind. These events, which occur around 5 per cent of the time, are Alfv\ enic in nature with large magnetic field deflections and are the same temperature as the surrounding plasma, in ...

Horbury, T; Matteini, L; Stansby, D;

Published by: Monthly Notices of the Royal Astronomical Society      Published on: 08/2018

YEAR: 2018     DOI: 10.1093/mnras/sty953

parker solar probe; Solar Probe Plus; Solar wind; Sun: corona

Radial evolution of the solar wind in pure high-speed streams: HELIOS revised observations

Spacecraft observations have shown that the proton temperature in the solar wind falls off with radial distance more slowly than expected for an adiabatic prediction. Usually, previous studies have been focused on the evolution of the solar-wind plasma by using the bulk speed as an order parameter to discriminate different regimes. In contrast, here, we study the radial evolution of pure and homogeneous fast streams (i.e. well-defined streams of coronal-hole plasma that maintain their identity during several solar rotatio ...

Perrone, Denise; Stansby, D; Horbury, T; Matteini, L;

Published by: Monthly Notices of the Royal Astronomical Society      Published on: 03/2019

YEAR: 2018     DOI: 10.1093/mnras/sty3348

parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere

Diagnosing solar wind origins using in situ measurements in the inner heliosphere

Robustly identifying the solar sources of individual packets of solar wind measured in interplanetary space remains an open problem. We set out to see if this problem is easier to tackle using solar wind measurements closer to the Sun than 1 au, where the mixing and dynamical interaction of different solar wind streams is reduced. Using measurements from the Helios mission, we examined how the proton core temperature anisotropy and cross-helicity varied with distance. At 0.3 au there are two clearly separated anisotropic ...

Stansby, D; Horbury, T; Matteini, L;

Published by: Monthly Notices of the Royal Astronomical Society      Published on: 01/2019

YEAR: 2018     DOI: 10.1093/mnras/sty2814

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun:; Sun: heliosphere



  1