Notice:
|
Found 2 entries in the Bibliography.
Showing entries from 1 through 2
2017 |
The radio frequency telecommunications system for the NASA Europa clipper mission The NASA Europa Clipper mission, a partnership between the California Institute of Technology Jet Propulsion Laboratory (JPL) and the Johns Hopkins University Applied Physics Laboratory (APL), is currently in Phase B and scheduled for launch in 2022. A Jupiter orbiter, it will perform repeated flybys of the moon, Europa, to assess the icy moon’s structure and habitability. The spacecraft’s dual X/Ka-band radio frequency telecommunications subsystem has five primary functions: Provide spacecraft command capability ... Srinivasan, Dipak; Angert, Matthew; Ballarotto, Mihaela; Berman, Simmie; Bray, Matthew; Garvey, Robert; Hahne, Devin; Haskins, Chris; Porter, Jamie; Schulze, Ron; Scott, Chris; Sharma, Avinash; Sheldon, Colin; Published by: Proceedings of the International Astronautical Congress, IAC Published on: Data handling; Earth (planet); Microwave antennas; NASA; Orbits; Propulsion; Radio navigation; Radio waves; Space flight; Telecommunication; Traveling wave tubes; Parker Engineering |
2016 |
From prototype technology to flight: Infusing the Frontier Radio into space missions New technologies are constantly being developed at many space-related institutions. A significant challenge is to not only propose and develop these new technologies, but to infuse them into real space missions. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has a successful history of infusing such new technologies into NASA flight programs, including non-coherent navigation in the CONTOUR mission (launched 2002), a circularly-polarized phased-array antenna on the MESSENGER mission (2004), and a low-power ... Srinivasan, Dipak; Haskins, Christopher; Published by: Proceedings of the International Astronautical Congress, IAC Published on: |
1