Notice:
|
Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2021 |
Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. \ Aims: This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7\ensuremath-8, 2020, from both an observational and a modeli ... Telloni, D.; Scolini, C.; Möstl, C.; Zank, G.~P.; Zhao, L.; Weiss, A.~J.; Reiss, M.~A.; Laker, R.; Perrone, D.; Khotyaintsev, Y.; Steinvall, K.; Sorriso-Valvo, L.; Horbury, T.~S.; Wimmer-Schweingruber, R.~F.; Bruno, R.; Amicis, R.; De Marco, R.; Jagarlamudi, V.~K.; Carbone, F.; Marino, R.; Stangalini, M.; Nakanotani, M.; Adhikari, L.; Liang, H.; Woodham, L.~D.; Davies, E.~E.; Hietala, H.; Perri, S.; omez-Herrero, R.; iguez-Pacheco, Rodr\; Antonucci, E.; Romoli, M.; Fineschi, S.; Maksimovic, M.; Sou\vcek, J.; Chust, T.; Kretzschmar, M.; Vecchio, A.; Müller, D.; Zouganelis, I.; Winslow, R.~M.; Giordano, S.; Mancuso, S.; Susino, R.; Ivanovski, S.~L.; Messerotti, M.; Brien, H.; Evans, V.; Angelini, V.; Published by: \aap Published on: dec YEAR: 2021   DOI: 10.1051/0004-6361/202140648 Parker Data Used; magnetohydrodynamics (MHD); Sun: coronal mass ejections (CMEs); Sun: evolution; Sun: heliosphere; Solar wind; solar-terrestrial relations |
We present the first Parker Solar Probe mission (PSP)-observed coronal mass ejection (CME) that hits a second spacecraft before the end of the PSP encounter, providing an excellent opportunity to study short-term CME evolution. The CME was launched from the Sun on 2019 October 10 and was measured in situ at PSP on 2019 October 13 and at STEREO-A on 2019 October 14. The small, but not insignificant, radial (\raisebox-0.5ex\textasciitilde0.15 au) and longitudinal (\raisebox-0.5ex\textasciitilde8\textdegree) separation between ... Winslow, Reka; Lugaz, No\; Scolini, Camilla; Galvin, Antoinette; Published by: \apj Published on: aug YEAR: 2021   DOI: 10.3847/1538-4357/ac0821 Solar coronal mass ejections; Heliosphere; 310; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used |
In-situ measurements carried out by spacecraft in radial alignment are critical to advance our knowledge on the evolutionary behavior of coronal mass ejections (CMEs) and their magnetic structures during propagation through interplanetary space. Yet, the scarcity of radially aligned CME crossings restricts investigations on the evolution of CME magnetic structures to a few case studies, preventing a comprehensive understanding of CME complexity changes during propagation. In this Letter, we perform numerical simulations of C ... Scolini, Camilla; Winslow, Reka; Lugaz, No\; Poedts, Stefaan; Published by: \apjl Published on: aug YEAR: 2021   DOI: 10.3847/2041-8213/ac0d58 Solar coronal mass ejections; Solar wind; Parker Data Used; interplanetary magnetic fields; Corotating streams; 310; 1534; 824; 314; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
2020 |
Improving Predictions of High-Latitude Coronal Mass Ejections Throughout the Heliosphere Predictions of the impact of coronal mass ejections (CMEs) in the heliosphere mostly rely on cone CME models, whose performances are optimized for locations in the ecliptic plane and at 1 AU (e.g., at Earth). Progresses in the exploration of the inner heliosphere, however, advocate the need to assess their performances at both higher latitudes and smaller heliocentric distances. In this work, we perform 3-D magnetohydrodynamics simulations of artificial cone CMEs using the EUropean Heliospheric FORecasting Information Ass ... Scolini, C.; e, Chan\; Pomoell, J.; Rodriguez, L.; Poedts, S.; Published by: Space Weather Published on: 03/2020 YEAR: 2020   DOI: 10.1029/2019SW002246 coronal mass ejections; forecasting; Heliosphere; modeling; parker solar probe; Solar Probe Plus |
1