Notice:
|
Found 7 entries in the Bibliography.
Showing entries from 1 through 7
2021 |
The angular-momentum flux in the solar wind observed during Solar Orbiter s first orbit \ Aims: We present the first measurements of the angular- momentum flux in the solar wind recorded by the Solar Orbiter spacecraft. Our aim is to validate these measurements to support future studies of the Sun s angular-momentum loss. \ Methods: We combined 60-min averages of the proton bulk moments and the magnetic field measured by the Solar Wind Analyser and the magnetometer onboard Solar Orbiter. We calculated the angular-momentum flux per solid-angle element using data from the first orbit of the mission s cruise phase ... Verscharen, Daniel; Stansby, David; Finley, Adam; Owen, Christopher; Horbury, Timothy; Maksimovic, Milan; Velli, Marco; Bale, Stuart; Louarn, Philippe; Fedorov, Andrei; Bruno, Roberto; Livi, Stefano; Khotyaintsev, Yuri; Vecchio, Antonio; Lewis, Gethyn; Anekallu, Chandrasekhar; Kelly, Christopher; Watson, Gillian; Kataria, Dhiren; Brien, Helen; Evans, Vincent; Angelini, Virginia; SWA, MAG; Teams, RPW; Published by: \aap Published on: dec YEAR: 2021   DOI: 10.1051/0004-6361/202140956 magnetohydrodynamics (MHD); plasmas; Sun: magnetic fields; Solar wind; stars: rotation; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
2020 |
ICME Evolution in the Inner Heliosphere ICMEs (interplanetary coronal mass ejections), the heliospheric counterparts of what is observed with coronagraphs at the Sun as CMEs, have been the subject of intense interest since their close association with geomagnetic storms was established in the 1980s. These major interplanetary plasma and magnetic field transients, often preceded and accompanied by solar energetic particles (SEPs), interact with planetary magnetospheres, ionospheres, and upper atmospheres in now fairly well-understood ways, although their details ... Luhmann, J.; Gopalswamy, N.; Jian, L.; Lugaz, N.; Published by: Solar Physics Published on: 04/2020 YEAR: 2020   DOI: 10.1007/s11207-020-01624-0 CME; ICME; parker solar probe; Solar Probe Plus; space weather |
2013 |
Hypervelocity Impact Response of Ti-6Al-4V and Commercially Pure Titanium Titanium alloy, Ti-6Al-4V, and commercially pure (CP) Titanium will be used to protect the Solar Probe Plus (SPP) spacecraft against hypervelocity impacts by solar dust particles. The results of six hypervelocity impact (HVI) tests performed on Ti-6Al-4V and CP monolithic samples (3 each) arc evaluated in terms of cratering and spall damage, and compared with crater depth and spall initiation predictions using the Ballistic Limit Equation (BLE) for Titanium shields developed at NASA Johnson Space Center and hydrocode computa ... Iyer, Kaushik; Poormon, Kevin; Deacon, Ryan; Mehoke, Douglas; Swaminathan, P.; Brown, Robert; Published by: Published on: YEAR: 2013   DOI: 10.1016/j.proeng.2013.05.016 |
2012 |
Use of hydrocode modeling to develop advanced MMOD shielding designs A multi-physics computations-based methodology for space debris hypervelocity impact (HVI) damage mitigation is presented. Specifically, improved debris mitigation through development of innovative, lightweight structural designs is described. The methodology has been applied to the design of the Solar Probe Plus (SPP) spacecraft to mitigate extreme solar microdust hypervelocity impacts (50-300 km/s) by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). The methodology combines hydrocode computations of the c ... Iyer, Kaushik; Swaminathan, P.K.; Mehoke, Douglas; Carrasco, Cesar; Brown, Robert; Batra, Romesh; Published by: IEEE Aerospace Conference Proceedings Published on: |
A review of the Solar Probe Plus dust protection approach The Solar Probe Plus (SPP) spacecraft will go closer to the Sun than any manmade object has gone before, which has required the development of new thermal and micrometeoroid protection technologies. During the 24 solar orbits of the mission, the spacecraft will encounter a thermal environment that is 50 times more severe than any previous spacecraft. It will also travel through a dust environment previously unexplored, and be subject to particle hypervelocity impacts (HVI) at velocities much larger than anything previously e ... Mehoke, Douglas; Brown, Robert; Swaminathan, P.K.; Kerley, Gerald; Carrasco, Cesar; Iyer, Kaushik; Published by: IEEE Aerospace Conference Proceedings Published on: Dust; Earth (planet); Interplanetary flight; Particle size analysis; Probes; Space debris; Spacecraft; Parker Engineering |
Hyper velocity protection developments on the solar probe plus mission The Solar Probe Plus (SPP) spacecraft will go closer to the Sun than any manmade object has gone before. The mission includes both solar flux and micrometeoroid environments much more severe than anything experienced by previous spacecraft. As a result, new analytical and testing methodologies are being developed to ensure the success of the mission. One of the major efforts is the development of an analytical approach for hypervelocity impacts (HVI) at speeds up to 300 km/s. To date, this dust study has made several notable ... Mehoke, Douglas; Swaminathan, P.K.; Carrasco, Cesar; Brown, Robert; Iyer, Kaushik; Published by: Proceedings of the International Astronautical Congress, IAC Published on: Cooling systems; Dust; Earth (planet); Equations of state; Interplanetary flight; Probes; Thermoelectric equipment; Parker Engineering |
Use of Hydrocode Modeling to Develop Advanced MMOD Shielding Designs A multi-physics computations-based methodology for space debris hypervelocity impact (HVI) damage mitigation is presented. Specifically, improved debris mitigation through development of innovative, lightweight structural designs is described. The methodology has been applied to the design of the Solar Probe Plus (SPP) spacecraft to mitigate extreme solar microdust hypervelocity impacts (50-300 km/s) by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). The methodology combines hydrocode computations of the c ... Iyer, Kaushik; Mehoke, Douglas; Brown, Robert; Swaminathan, P.; Carrasco, Cesar; Batra, Romesh; Published by: Published on: YEAR: 2012   DOI: 10.1109/AERO.2012.6187075 |
1