PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2014

Predicting the solar probe plus solar array output

Predicting the output of the Solar Probe Plus (SPP) solar array presents unique challenges as the array operates at very high temperatures and irradiances, and has a water-cooled substrate. A further complication arises because, close to perihelion, each string operates at an irradiance and temperature different from the other strings. This paper provides the methodology and results for computing the output of the array over a range of irradiances from zero to seventy suns, temperatures from -80°C to 164°C, and angle ...

Gaddy, Edward; Butler, Michael; Lockwood, Mary; Martin, Gayle; Roufberg, Lew; Vigil, Cristina; Boca, Andreea; Richards, Benjamin; Stall, Rick; Schurman, Matthew;

Published by: 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014      Published on:

YEAR: 2014     DOI:

Aerospace engineering; Cell engineering; Photoelectrochemical cells; Photovoltaic cells; Probes; Satellites; Solar cell arrays; Sun; Parker Engineering

2012

Solar Probe Plus (SPP) autonomous solar array angle control

The Solar Probe Plus mission, under NASA s Living with a Star program, will fly a spacecraft (S/C) through the sun s outer corona with orbit perihelia that gradually approach as close as 9.5 solar radii from the center of the sun. The mission will gather data on the processes of coronal heating, solar wind acceleration, and production, evolution and transport of solar energetic particles. The S/C is powered by two actively cooled photovoltaic solar array (S/A) wings. Due to the extreme environments near the sun, the S/C body ...

Baisden, Carson; Roufberg, Lew;

Published by: 10th Annual International Energy Conversion Engineering Conference, IECEC 2012      Published on:

YEAR: 2012     DOI:

Attitude control; NASA; Orbits; Probes; Solar cell arrays; Space flight; Vibrations (mechanical); Parker Engineering

Solar Probe Plus (SPP) spacecraft power system

The Solar Probe Plus (SPP) mission, under NASA s Living with a Star program, will fly a spacecraft (S/C) through the sun s outer corona with orbit perihelia that gradually approach as close as 9.5 solar radii from the center of the sun. The mission will gather data on the processes of coronal heating, solar wind acceleration, and the production, evolution and transport of solar energetic particles. The S/C is powered by two actively cooled photovoltaic solar array (S/A) wings. Due to the extreme environments near the sun, th ...

Roufberg, Lew; Baisden, Carson;

Published by: 10th Annual International Energy Conversion Engineering Conference, IECEC 2012      Published on:

YEAR: 2012     DOI:

Battery management systems; Charging (batteries); Electric power system control; NASA; Orbits; Probes; Secondary batteries; Solar cell arrays; Space flight; Parker Engineering

2010

THE SOLAR PROBE PLUS SOLAR ARRAY DEVELOPMENT AND DESIGN

The Solar Probe Plus (SPP) spacecraft will orbit as closely as 9.5 solar radii from the sun; so close that its thermal protection shield (TPS) will reach a peak temperature of 1,400C. To work in this environment, the solar array will use pressurized water cooling and operate in the penumbra formed by the TPS at a 68 degrees angle of incidence. Even with these mitigations, the array will be subject to extremely high intensity and temperature. This paper will summarize the array s environment, present a preliminary design, out ...

Gaddy, Edward; Decker, Rob; Lockwood, Mary; Roufberg, Lew; Knutzen, Gayle; Marsh, Danielle;

Published by:       Published on:

YEAR: 2010     DOI: 10.1109/PVSC.2010.5617077

Parker Data Used

The Solar Probe Plus solar array development and design

The Solar Probe Plus (SPP) spacecraft will orbit as closely as 9.5 solar radii from the sun; so close that its thermal protection shield (TPS) will reach a peak temperature of 1,400C. To work in this environment, the solar array will use pressurized water cooling and operate in the penumbra formed by the TPS at a 68° angle of incidence. Even with these mitigations, the array will be subject to extremely high intensity and temperature. This paper will summarize the array s environment, present a preliminary design, outlin ...

Gaddy, Edward; Decker, Rob; Lockwood, Mary; Roufberg, Lew; Knutzen, Gayle; Marsh, Danielle;

Published by: Conference Record of the IEEE Photovoltaic Specialists Conference      Published on:

YEAR: 2010     DOI:

Orbits; Probes; Parker Engineering



  1