Notice:
|
Found 5 entries in the Bibliography.
Showing entries from 1 through 5
2014 |
Predicting the solar probe plus solar array output Predicting the output of the Solar Probe Plus (SPP) solar array presents unique challenges as the array operates at very high temperatures and irradiances, and has a water-cooled substrate. A further complication arises because, close to perihelion, each string operates at an irradiance and temperature different from the other strings. This paper provides the methodology and results for computing the output of the array over a range of irradiances from zero to seventy suns, temperatures from -80°C to 164°C, and angle ... Gaddy, Edward; Butler, Michael; Lockwood, Mary; Martin, Gayle; Roufberg, Lew; Vigil, Cristina; Boca, Andreea; Richards, Benjamin; Stall, Rick; Schurman, Matthew; Published by: 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014 Published on: Aerospace engineering; Cell engineering; Photoelectrochemical cells; Photovoltaic cells; Probes; Satellites; Solar cell arrays; Sun; Parker Engineering |
2012 |
Solar Probe Plus (SPP) autonomous solar array angle control The Solar Probe Plus mission, under NASA s Living with a Star program, will fly a spacecraft (S/C) through the sun s outer corona with orbit perihelia that gradually approach as close as 9.5 solar radii from the center of the sun. The mission will gather data on the processes of coronal heating, solar wind acceleration, and production, evolution and transport of solar energetic particles. The S/C is powered by two actively cooled photovoltaic solar array (S/A) wings. Due to the extreme environments near the sun, the S/C body ... Baisden, Carson; Roufberg, Lew; Published by: 10th Annual International Energy Conversion Engineering Conference, IECEC 2012 Published on: Attitude control; NASA; Orbits; Probes; Solar cell arrays; Space flight; Vibrations (mechanical); Parker Engineering |
Solar Probe Plus (SPP) spacecraft power system The Solar Probe Plus (SPP) mission, under NASA s Living with a Star program, will fly a spacecraft (S/C) through the sun s outer corona with orbit perihelia that gradually approach as close as 9.5 solar radii from the center of the sun. The mission will gather data on the processes of coronal heating, solar wind acceleration, and the production, evolution and transport of solar energetic particles. The S/C is powered by two actively cooled photovoltaic solar array (S/A) wings. Due to the extreme environments near the sun, th ... Roufberg, Lew; Baisden, Carson; Published by: 10th Annual International Energy Conversion Engineering Conference, IECEC 2012 Published on: Battery management systems; Charging (batteries); Electric power system control; NASA; Orbits; Probes; Secondary batteries; Solar cell arrays; Space flight; Parker Engineering |
2010 |
THE SOLAR PROBE PLUS SOLAR ARRAY DEVELOPMENT AND DESIGN The Solar Probe Plus (SPP) spacecraft will orbit as closely as 9.5 solar radii from the sun; so close that its thermal protection shield (TPS) will reach a peak temperature of 1,400C. To work in this environment, the solar array will use pressurized water cooling and operate in the penumbra formed by the TPS at a 68 degrees angle of incidence. Even with these mitigations, the array will be subject to extremely high intensity and temperature. This paper will summarize the array s environment, present a preliminary design, out ... Gaddy, Edward; Decker, Rob; Lockwood, Mary; Roufberg, Lew; Knutzen, Gayle; Marsh, Danielle; Published by: Published on: YEAR: 2010   DOI: 10.1109/PVSC.2010.5617077 |
The Solar Probe Plus solar array development and design The Solar Probe Plus (SPP) spacecraft will orbit as closely as 9.5 solar radii from the sun; so close that its thermal protection shield (TPS) will reach a peak temperature of 1,400C. To work in this environment, the solar array will use pressurized water cooling and operate in the penumbra formed by the TPS at a 68° angle of incidence. Even with these mitigations, the array will be subject to extremely high intensity and temperature. This paper will summarize the array s environment, present a preliminary design, outlin ... Gaddy, Edward; Decker, Rob; Lockwood, Mary; Roufberg, Lew; Knutzen, Gayle; Marsh, Danielle; Published by: Conference Record of the IEEE Photovoltaic Specialists Conference Published on: |
1