PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2023

Association of intermittency with electron heating in the near-Sun solar wind

Several studies in the near-Earth environment show that intermittent structures are important sites of energy dissipation and particle energization. Recent Parker Solar Probe (PSP) data, sampled in the near-Sun environment, have shown that proton heating is concentrated near coherent structures, suggesting local heating of protons by turbulent cascade in this region. However, whether electrons exhibit similar behaviour in the near-Sun environment is not clear. Here, we address this question using PSP data collected near the ...

Phillips, C.; Bandyopadhyay, R.; McComas, D.~J.; Bale, S.~D.;

Published by: \mnras      Published on: feb

YEAR: 2023     DOI: 10.1093/mnrasl/slac143

Parker Data Used; (magnetohydrodynamics) MHD; turbulence; Sun: corona; Solar wind; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

2022

Taylor Microscale and Effective Reynolds Number near the Sun from PSP

The Taylor microscale is a fundamental length scale in turbulent fluids, representing the end of fluid properties and onset of dissipative processes. The Taylor microscale can also be used to evaluate the Reynolds number in classical turbulence theory. Although the solar wind is weakly collisional, it approximately behaves as a magnetohydrodynamic (MHD) fluid at scales larger than the kinetic scale. As a result, classical fluid turbulence theory and formalisms are often used to study turbulence in the MHD range. Therefore, a ...

Phillips, C.; Bandyopadhyay, R.; McComas, D.~J.;

Published by: \apj      Published on: jul

YEAR: 2022     DOI: 10.3847/1538-4357/ac713f

Parker Data Used; Solar wind; interplanetary turbulence; Magnetohydrodynamics; Space plasmas; 1534; 830; 1964; 1544; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics



  1