PSP Bibliography


  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 4 entries in the Bibliography.

Showing entries from 1 through 4


Coherent Events at Ion Scales in the Inner Heliosphere: Parker Solar Probe Observations during the First Encounter

The Parker Solar Probe mission has shown the ubiquitous presence of strong magnetic field deflections, namely switchbacks, during its first perihelion where it was embedded in a highly Alfvenic slow stream. Here, we study the turbulent magnetic fluctuations around ion scales in three intervals characterized by a different switchback activity, identified by the behavior of the magnetic field radial component, B-r. Quiet (B-r does not show significant fluctuations), weakly disturbed (B-r has strong fluctuations but no reversal ...

Perrone, Denise; Bruno, Roberto; Amicis, Raffaella; Telloni, Daniele; De Marco, Rossana; Stangalini, Marco; Perri, Silvia; Pezzi, Oreste; Alexandrova, Olga; Bale, Stuart;

Published by: ASTROPHYSICAL JOURNAL      Published on: DEC

YEAR: 2020     DOI: 10.3847/1538-4357/abc480

Parker Data Used

Highly Alfv\ enic slow solar wind at 0.3 au during a solar minimum: Helios insights for Parker Solar Probe and Solar Orbiter

Alfv\ enic fluctuations in solar wind are an intrinsic property of fast streams, while slow intervals typically have a very low degree of Alfv\ enicity, with much more variable parameters. However, sometimes a slow wind can be highly Alfv\ enic. Here we compare three different regimes of solar wind, in terms of Alfv\ enic content and spectral properties, during a minimum phase of the solar activity and at 0.3 au. We show that fast and Alfv\ enic slow intervals share some common characteristics. This would suggest a simila ...

Perrone, D.; D\textquoterightAmicis, R.; De Marco, R.; Matteini, L.; Stansby, D.; Bruno, R.; Horbury, T.;

Published by: Astronomy \& Astrophysics      Published on: 01/2020

YEAR: 2020     DOI: 10.1051/0004-6361/201937064

parker solar probe; plasmas; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere; turbulence


Thermodynamics of pure fast solar wind: radial evolution of the temperature\textendashspeed relationship in the inner heliosphereABSTRACT

A strong correlation between speed and proton temperature has been observed, across many years, on hourly averaged measurements in the solar wind. Here, we show that this relationship is also observed at a smaller scale on intervals of a few days, within a single stream. Following the radial evolution of a well-defined stream of coronal-hole plasma, we show that the temperature-speed (T-V) relationship evolves with distance, implying that the T-V relationship at 1 au cannot be used as a proxy for that near the Sun. We sug ...

Perrone, Denise; Stansby, D; Horbury, T; Matteini, L;

Published by: Monthly Notices of the Royal Astronomical Society      Published on: 09/2019

YEAR: 2019     DOI: 10.1093/mnras/stz1877

parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere


Radial evolution of the solar wind in pure high-speed streams: HELIOS revised observations

Spacecraft observations have shown that the proton temperature in the solar wind falls off with radial distance more slowly than expected for an adiabatic prediction. Usually, previous studies have been focused on the evolution of the solar-wind plasma by using the bulk speed as an order parameter to discriminate different regimes. In contrast, here, we study the radial evolution of pure and homogeneous fast streams (i.e. well-defined streams of coronal-hole plasma that maintain their identity during several solar rotatio ...

Perrone, Denise; Stansby, D; Horbury, T; Matteini, L;

Published by: Monthly Notices of the Royal Astronomical Society      Published on: 03/2019

YEAR: 2018     DOI: 10.1093/mnras/sty3348

parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere