PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 15 entries in the Bibliography.


Showing entries from 1 through 15


2023

Time Dependence of 50-250 MeV Galactic Cosmic-Ray Protons between Solar Cycles 24 and 25, Measured by the High-energy Particle Detector on board the CSES-01 Satellite

Time-dependent energy spectra of galactic cosmic rays (GCRs) carry crucial information regarding their origin and propagation throughout the interstellar environment. When observed at the Earth, after traversing the interplanetary medium, such spectra are heavily affected by the solar wind and the embedded solar magnetic field permeating the inner sectors of the heliosphere. The activity of the Sun changes significantly over an 11 yr solar cycle-and so does the effect on cosmic particles; this translates into a phenomenon ca ...

Martucci, M.; Ammendola, R.; Badoni, D.; Bartocci, S.; Battiston, R.; Beolè, S.; Burger, W.~J.; Campana, D.; Castellini, G.; Cipollone, P.; Coli, S.; Conti, L.; Contin, A.; Cristoforetti, M.; Angelo, G.; De Donato, C.; De Santis, C.; Di Luca, A.; Follega, F.~M.; Gebbia, G.; Iuppa, R.; Lega, A.; Lolli, M.; Marcelli, N.; Masciantonio, G.; Mergè, M.; Mese, M.; Neubüser, C.; Nozzoli, F.; Oliva, A.; Osteria, G.; Pacini, L.; Palma, F.; Palmonari, F.; Panico, B.; Parmentier, A.; Perciballi, S.; Perfetto, F.; Picozza, P.; Pozzato, M.; Rebustini, G.~M.; Ricci, E.; Ricci, M.; Ricciarini, S.~B.; Savino, U.; Sahnoun, Z.; Scotti, V.; Sotgiu, A.; Sparvoli, R.; Ubertini, P.; Vilona, V.; Vitale, V.; Zoffoli, S.; Zuccon, P.; Aslam, O.~P.~M.; Ngobeni, M.~D.; Potgieter, M.~S.;

Published by: \apjl      Published on: mar

YEAR: 2023     DOI: 10.3847/2041-8213/acbea7

Parker Data Used; Active sun; Heliosphere; Galactic cosmic rays; 18; 711; 567

Time Dependence of 50-250 MeV Galactic Cosmic-Ray Protons between Solar Cycles 24 and 25, Measured by the High-energy Particle Detector on board the CSES-01 Satellite

Time-dependent energy spectra of galactic cosmic rays (GCRs) carry crucial information regarding their origin and propagation throughout the interstellar environment. When observed at the Earth, after traversing the interplanetary medium, such spectra are heavily affected by the solar wind and the embedded solar magnetic field permeating the inner sectors of the heliosphere. The activity of the Sun changes significantly over an 11 yr solar cycle-and so does the effect on cosmic particles; this translates into a phenomenon ca ...

Martucci, M.; Ammendola, R.; Badoni, D.; Bartocci, S.; Battiston, R.; Beolè, S.; Burger, W.~J.; Campana, D.; Castellini, G.; Cipollone, P.; Coli, S.; Conti, L.; Contin, A.; Cristoforetti, M.; Angelo, G.; De Donato, C.; De Santis, C.; Di Luca, A.; Follega, F.~M.; Gebbia, G.; Iuppa, R.; Lega, A.; Lolli, M.; Marcelli, N.; Masciantonio, G.; Mergè, M.; Mese, M.; Neubüser, C.; Nozzoli, F.; Oliva, A.; Osteria, G.; Pacini, L.; Palma, F.; Palmonari, F.; Panico, B.; Parmentier, A.; Perciballi, S.; Perfetto, F.; Picozza, P.; Pozzato, M.; Rebustini, G.~M.; Ricci, E.; Ricci, M.; Ricciarini, S.~B.; Savino, U.; Sahnoun, Z.; Scotti, V.; Sotgiu, A.; Sparvoli, R.; Ubertini, P.; Vilona, V.; Vitale, V.; Zoffoli, S.; Zuccon, P.; Aslam, O.~P.~M.; Ngobeni, M.~D.; Potgieter, M.~S.;

Published by: \apjl      Published on: mar

YEAR: 2023     DOI: 10.3847/2041-8213/acbea7

Parker Data Used; Active sun; Heliosphere; Galactic cosmic rays; 18; 711; 567

2022

On the utility of flux rope models for CME magnetic structure below 30 R$_\ensuremath\odot$

We present a comprehensive analysis of the three-dimensional magnetic flux rope structure generated during the Lynch et al. (2019, ApJ 880:97) magnetohydrodynamic (MHD) simulation of a global-scale, 360 \textdegree -wide streamer blowout coronal mass ejection (CME) eruption. We create both fixed and moving synthetic spacecraft to generate time series of the MHD variables through different regions of the flux rope CME. Our moving spacecraft trajectories are derived from the spatial coordinates of Parker Solar Probe s past enc ...

Lynch, Benjamin; Al-Haddad, Nada; Yu, Wenyuan; Palmerio, Erika; Lugaz, No\;

Published by: Advances in Space Research      Published on: sep

YEAR: 2022     DOI: 10.1016/j.asr.2022.05.004

Parker Data Used; magnetohydrodynamics (MHD); Solar corona; Coronal mass ejection (CME); magnetic flux rope; Parker Solar Probe (PSP); Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Direct First Parker Solar Probe Observation of the Interaction of Two Successive Interplanetary Coronal Mass Ejections in 2020 November

We investigate the effects of the evolutionary processes in the internal magnetic structure of two interplanetary coronal mass ejections (ICMEs) detected in situ between 2020 November 29 and December 1 by the Parker Solar Probe (PSP). The sources of the ICMEs were observed remotely at the Sun in EUV and subsequently tracked to their coronal counterparts in white light. This period is of particular interest to the community as it has been identified as the first widespread solar energetic particle event of solar cycle 25. The ...

Nieves-Chinchilla, Teresa; Alzate, Nathalia; Cremades, Hebe; ia, Laura; Santos, Luiz; Narock, Ayris; Xie, Hong; Szabo, Adam; Palmerio, Erika; Krupar, Vratislav; Pulupa, Marc; Lario, David; Stevens, Michael; Wilson, Lynn; Kwon, Ryun-Young; Mays, Leila; St. Cyr, Chris; Hess, Phillip; Reeves, Katharine; Seaton, Daniel; Niembro, Tatiana; Bale, Stuart; Kasper, Justin;

Published by: \apj      Published on: may

YEAR: 2022     DOI: 10.3847/1538-4357/ac590b

Parker Data Used; Solar coronal mass ejections; Solar wind; Interplanetary physics; 310; 1534; 827; Astrophysics - Solar and Stellar Astrophysics

CMEs and SEPs During November-December 2020: A Challenge for Real-Time Space Weather Forecasting

Predictions of coronal mass ejections (CMEs) and solar energetic particles (SEPs) are a central issue in space weather forecasting. In recent years, interest in space weather predictions has expanded to include impacts at other planets beyond Earth as well as spacecraft scattered throughout the heliosphere. In this sense, the scope of space weather science now encompasses the whole heliospheric system, and multipoint measurements of solar transients can provide useful insights and validations for prediction models. In this w ...

Palmerio, Erika; Lee, Christina; Mays, Leila; Luhmann, Janet; Lario, David; anchez-Cano, Beatriz; Richardson, Ian; Vainio, Rami; Stevens, Michael; Cohen, Christina; Steinvall, Konrad; Möstl, Christian; Weiss, Andreas; Nieves-Chinchilla, Teresa; Li, Yan; Larson, Davin; Heyner, Daniel; Bale, Stuart; Galvin, Antoinette; Holmström, Mats; Khotyaintsev, Yuri; Maksimovic, Milan; Mitrofanov, Igor;

Published by: Space Weather      Published on: may

YEAR: 2022     DOI: 10.1029/2021SW002993

Parker Data Used; coronal mass ejections; Solar energetic particles; space weather forecasts; MHD models; Inner heliosphere; Solar wind; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Physics - Space Physics

Eruption and Interplanetary Evolution of a Stealthy Streamer-Blowout CME Observed by PSP at \ensuremath\sim0.5 AU

Streamer-blowout coronal mass ejections (SBO-CMEs) are the dominant CME population during solar minimum. Although they are typically slow and lack clear low-coronal signatures, they can cause geomagnetic storms. With the aid of extrapolated coronal fields and remote observations of the off-limb low corona, we study the initiation of an SBO-CME preceded by consecutive CME eruptions consistent with a multi-stage sympathetic breakout scenario. From inner-heliospheric Parker Solar Probe (PSP) observations, it is evident that the ...

Pal, Sanchita; Lynch, Benjamin; Good, Simon; Palmerio, Erika; Asvestari, Eleanna; Pomoell, Jens; Stevens, Michael; Kilpua, Emilia;

Published by: Frontiers in Astronomy and Space Sciences      Published on: may

YEAR: 2022     DOI: 10.3389/fspas.2022.903676

Parker Data Used; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Eruption and Interplanetary Evolution of a Stealthy Streamer-Blowout CME Observed by PSP at \ensuremath\sim0.5 AU

Streamer-blowout coronal mass ejections (SBO-CMEs) are the dominant CME population during solar minimum. Although they are typically slow and lack clear low-coronal signatures, they can cause geomagnetic storms. With the aid of extrapolated coronal fields and remote observations of the off-limb low corona, we study the initiation of an SBO-CME preceded by consecutive CME eruptions consistent with a multi-stage sympathetic breakout scenario. From inner-heliospheric Parker Solar Probe (PSP) observations, it is evident that the ...

Pal, Sanchita; Lynch, Benjamin; Good, Simon; Palmerio, Erika; Asvestari, Eleanna; Pomoell, Jens; Stevens, Michael; Kilpua, Emilia;

Published by: Frontiers in Astronomy and Space Sciences      Published on: may

YEAR: 2022     DOI: 10.3389/fspas.2022.903676

Parker Data Used; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Influence of Large-scale Interplanetary Structures on the Propagation of Solar Energetic Particles: The Multispacecraft Event on 2021 October 9

An intense solar energetic particle (SEP) event was observed on 2021 October 9 by multiple spacecraft distributed near the ecliptic plane at heliocentric radial distances R \ensuremath\lesssim 1 au and within a narrow range of heliolongitudes. A stream interaction region (SIR), sequentially observed by Parker Solar Probe (PSP) at R = 0.76 au and 48\textdegree east from Earth (\ensuremath\phi = E48\textdegree), STEREO-A (at R = 0.96 au, \ensuremath\phi = E39\textdegree), Solar Orbiter (SolO; at R = 0.68 au, \ensuremath\phi = ...

Lario, D.; Wijsen, N.; Kwon, R.~Y.; anchez-Cano, B.; Richardson, I.~G.; Pacheco, D.; Palmerio, E.; Stevens, M.~L.; Szabo, A.; Heyner, D.; Dresing, N.; omez-Herrero, R.; Carcaboso, F.; Aran, A.; Afanasiev, A.; Vainio, R.; Riihonen, E.; Poedts, S.; Brüden, M.; Xu, Z.~G.; Kollhoff, A.;

Published by: \apj      Published on: jul

YEAR: 2022     DOI: 10.3847/1538-4357/ac6efd

Parker Data Used; Corotating streams; Solar energetic particles; Solar coronal mass ejection shocks; 314; 1491; 1997

Structure and fluctuations of a slow ICME sheath observed at 0.5 au by the Parker Solar Probe

Context. Sheath regions ahead of interplanetary coronal mass ejections (ICMEs) are compressed and turbulent global heliospheric structures. Their global and fine-scale structure are outstanding research problems, and only a few studies have been conducted on this topic closer to the Sun than 1 au. Comprehensive knowledge of the sheath structure and embedded fluctuations and of their evolution in interplanetary space is important for understanding their geoeffectiveness, their role in accelerating charged particles to high en ...

Kilpua, E.~K.~J.; Good, S.~W.; Ala-Lahti, M.; Osmane, A.; Pal, S.; Soljento, J.~E.; Zhao, L.~L.; Bale, S.;

Published by: \aap      Published on: jul

YEAR: 2022     DOI: 10.1051/0004-6361/202142191

Parker Data Used; Solar wind; Sun: coronal mass ejections (CMEs); shock waves; turbulence; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

PSP/IS\ensuremath\odotIS Observation of a Solar Energetic Particle Event Associated with a Streamer Blowout Coronal Mass Ejection during Encounter 6

In this paper we examine a low-energy solar energetic particle (SEP) event observed by IS\ensuremath\odotIS s Energetic Particle Instrument-Low (EPI-Lo) inside 0.18 au on 2020 September 30. This small SEP event has a very interesting time profile and ion composition. Our results show that the maximum energy and peak in intensity are observed mainly along the open radial magnetic field. The event shows velocity dispersion, and strong particle anisotropies are observed throughout the event, showing that more particles are stre ...

Getachew, T.; McComas, D.~J.; Joyce, C.~J.; Palmerio, E.; Christian, E.~R.; Cohen, C.~M.~S.; Desai, M.~I.; Giacalone, J.; Hill, M.~E.; Matthaeus, W.~H.; McNutt, R.~L.; Mitchell, D.~G.; Mitchell, J.~G.; Rankin, J.~S.; Roelof, E.~C.; Schwadron, N.~A.; Szalay, J.~R.; Zank, G.~P.; Zhao, L.; Lynch, B.~J.; Phan, T.~D.; Bale, S.~D.; Whittlesey, P.~L.; Kasper, J.~C.;

Published by: \apj      Published on: feb

YEAR: 2022     DOI: 10.3847/1538-4357/ac408f

Parker Data Used; 1491; 310; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

2021

Comparative Analysis of the 2020 November 29 Solar Energetic Particle Event Observed by Parker Solar Probe

We analyze two specific features of the intense solar energetic particle (SEP) event observed by Parker Solar Probe (PSP) between 2020 November 29 and 2020 December 2. The interplanetary counterpart of the coronal mass ejection (CME) on 2020 November 29 that generated the SEP event (hereafter ICME-2) arrived at PSP (located at 0.8 au from the Sun) on 2020 December 1. ICME-2 was preceded by the passage of an interplanetary shock at 18:35 UT on 2020 November 30 (hereafter S2), that in turn was preceded by another ICME (i.e., I ...

Lario, D.; Richardson, I.~G.; Palmerio, E.; Lugaz, N.; Bale, S.~D.; Stevens, M.~L.; Cohen, C.~M.~S.; Giacalone, J.; Mitchell, D.~G.; Szabo, A.; Nieves-Chinchilla, T.; Wilson, L.~B.; Christian, E.~R.; Hill, M.~E.; McComas, D.~J.; McNutt, R.~L.; Schwadron, N.~A.; Wiedenbeck, M.~E.;

Published by: \apj      Published on: oct

YEAR: 2021     DOI: 10.3847/1538-4357/ac157f

Parker Data Used; Solar energetic particles; Interplanetary shocks; Solar coronal mass ejections; interplanetary magnetic fields; 1491; 829; 310; 824

Predicting the Magnetic Fields of a Stealth CME Detected by Parker Solar Probe at 0.5 au

Stealth coronal mass ejections (CMEs) are eruptions from the Sun that are not associated with appreciable low-coronal signatures. Because they often cannot be linked to a well-defined source region on the Sun, analysis of their initial magnetic configuration and eruption dynamics is particularly problematic. In this article, we address this issue by undertaking the first attempt at predicting the magnetic fields of a stealth CME that erupted in 2020 June from the Earth-facing Sun. We estimate its source region with the aid o ...

Palmerio, Erika; Kay, Christina; Al-Haddad, Nada; Lynch, Benjamin; Yu, Wenyuan; Stevens, Michael; Pal, Sanchita; Lee, Christina;

Published by: \apj      Published on: oct

YEAR: 2021     DOI: 10.3847/1538-4357/ac25f4

Parker Data Used; Solar coronal mass ejections; Solar corona; interplanetary magnetic fields; Solar coronal streamers; 310; 1483; 824; 1486; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Predicting the Magnetic Fields of a Stealth CME Detected by Parker Solar Probe at 0.5 au

Stealth coronal mass ejections (CMEs) are eruptions from the Sun that are not associated with appreciable low-coronal signatures. Because they often cannot be linked to a well-defined source region on the Sun, analysis of their initial magnetic configuration and eruption dynamics is particularly problematic. In this article, we address this issue by undertaking the first attempt at predicting the magnetic fields of a stealth CME that erupted in 2020 June from the Earth-facing Sun. We estimate its source region with the aid o ...

Palmerio, Erika; Kay, Christina; Al-Haddad, Nada; Lynch, Benjamin; Yu, Wenyuan; Stevens, Michael; Pal, Sanchita; Lee, Christina;

Published by: \apj      Published on: oct

YEAR: 2021     DOI: 10.3847/1538-4357/ac25f4

Parker Data Used; Solar coronal mass ejections; Solar corona; interplanetary magnetic fields; Solar coronal streamers; 310; 1483; 824; 1486; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Solar probe based autonomous solar tracker system-A review

The energy source which is becoming very popular nowadays is a sustainable energy source, because of the high cost and extinction of conventional fuels. One of the examples of renewable sources is solar energy. Solar energy is profusely in nature and inexhaustible energy resources around the world. The main challenge in the solar field is the less amount of solar energy captured by photovoltaic (PV) systems. To increase the efficiency of the solar power generation system we n ...

Kumar, Sarvesh; Pal, Ankur; Singh, Pallavi; Mittal, Sudhanshu; Kumar, Yatendra;

Published by: 2021 International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2021      Published on:

YEAR: 2021     DOI:

Photovoltaic cells; Solar energy; Solar power plants; Parker Engineering

2020

ICME Evolution in the Inner Heliosphere

ICMEs (interplanetary coronal mass ejections), the heliospheric counterparts of what is observed with coronagraphs at the Sun as CMEs, have been the subject of intense interest since their close association with geomagnetic storms was established in the 1980s. These major interplanetary plasma and magnetic field transients, often preceded and accompanied by solar energetic particles (SEPs), interact with planetary magnetospheres, ionospheres, and upper atmospheres in now fairly well-understood ways, although their details ...

Luhmann, J.; Gopalswamy, N.; Jian, L.; Lugaz, N.;

Published by: Solar Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01624-0

CME; ICME; parker solar probe; Solar Probe Plus; space weather



  1