PSP Bibliography



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2020

The Solar Wind Angular Momentum Flux as Observed by Parker Solar Probe

he long-term evolution of the Sun\textquoterights rotation period cannot be directly observed, and is instead inferred from trends in the measured rotation periods of other Sun-like stars. Assuming the Sun spins down as it ages, following rotation rate proportional to age(-1/2), requires the current\ solar\ angular momentum (AM) loss rate to be around 6 x 10(30)erg. Magnetohydrodynamic models, and previous observations of the\ solar\ wind (from the Helios and Wind spacecraft), generally predict a value ...

Finley, Adam; Matt, Sean; eville, Victor; Pinto, Rui; Owens, Mathew; Kasper, Justin; Korreck, Kelly; Case, A.; Stevens, Michael; Whittlesey, Phyllis; Larson, Davin; Livi, Roberto;

YEAR: 2020     DOI: 10.3847/2041-8213/abb9a5

Parker Data Used; parker solar probe; Solar evolution; Solar Physics; Solar Probe Plus; Solar rotation; Solar wind; Stellar evolution; Stellar physics; Stellar rotation

The evolution of inverted magnetic fields through the inner heliosphereABSTRACT

Local inversions are often observed in the heliospheric magnetic field (HMF), but their origins and evolution are not yet fully understood. Parker Solar Probe has recently observed rapid, Alfv\ enic, HMF inversions in the inner heliosphere, known as \textquoterightswitchbacks\textquoteright, which have been interpreted as the possible remnants of coronal jets. It has also been suggested that inverted HMF may be produced by near-Sun interchange reconnection; a key process in mechanisms proposed for slow solar wind release. ...

Macneil, Allan; Owens, Mathew; Wicks, Robert; Lockwood, Mike; Bentley, Sarah; Lang, Matthew;

YEAR: 2020     DOI: 10.1093/mnras/staa951

Astrophysics - Solar and Stellar Astrophysics; magnetic fields; parker solar probe; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: heliosphere

2018

Generation of Inverted Heliospheric Magnetic Flux by Coronal Loop Opening and Slow Solar Wind Release

In situ spacecraft observations provide much-needed constraints on theories of solar wind formation and release, particularly the highly variable slow solar wind, which dominates near-Earth space. Previous studies have shown an association between local inversions in the heliospheric magnetic field (HMF) and solar wind released from the vicinity of magnetically closed coronal structures. We here show that in situ properties of inverted HMF are consistent with the same hot coronal source regions as the slow solar wind. We ...

Owens, Mathew; Lockwood, Mike; Barnard, Luke; MacNeil, Allan;

YEAR: 2018     DOI: 10.3847/2041-8213/aaee82

parker solar probe; Solar Probe Plus; Solar wind; Sun: activity; Sun: corona; Sun: magnetic fields

2015

Statistical study of magnetic cloud erosion by magnetic reconnection

recent studies suggest that magnetic reconnection is able to erode substantial amounts of the outer magnetic flux of interplanetary magnetic clouds (MCs) as they propagate in the heliosphere. We quantify and provide a broader context to this process, starting from 263 tabulated interplanetary coronal mass ejections, including MCs, observed over a time period covering 17 years and at a distance of 1 AU from the Sun with Wind (1995-2008) and the two STEREO (2009-2012) spacecraft. Based on several quality factors, including ...

Ruffenach, A.; Lavraud, B.; Farrugia, C.; emoulin, P.; Dasso, S.; Owens, M.; Sauvaud, J.-A.; Rouillard, A.; Lynnyk, A.; Foullon, C.; Savani, N.; Luhmann, J.; Galvin, A.;

YEAR: 2015     DOI: 10.1002/2014JA020628

coronal mass ejection; magnetic cloud; magnetic flux rope; magnetic reconnection; parker solar probe; Solar Probe Plus; Solar wind



  1