PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2022

Observation and Modeling of the Solar Wind Turbulence Evolution in the Sub-Mercury Inner Heliosphere

Telloni, Daniele; Adhikari, Laxman; Zank, Gary; Hadid, Lina; anchez-Cano, Beatriz; Sorriso-Valvo, Luca; Zhao, Lingling; Panasenco, Olga; Shi, Chen; Velli, Marco; Susino, Roberto; Verscharen, Daniel; Milillo, Anna; Alberti, Tommaso; Narita, Yasuhito; Verdini, Andrea; Grimani, Catia; Bruno, Roberto; Amicis, Raffaella; Perrone, Denise; Marino, Raffaele; Carbone, Francesco; Califano, Francesco; Malara, Francesco; Stawarz, Julia; Laker, Ronan; Liberatore, Alessandro; Bale, Stuart; Kasper, Justin; Heyner, Daniel; de Wit, Thierry; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Case, Anthony; Korreck, Kelly; Larson, Davin; Livi, Roberto; Stevens, Michael; Whittlesey, Phyllis; Auster, Hans-Ulrich; Richter, Ingo;

Published by: \apjl      Published on: oct

YEAR: 2022     DOI: 10.3847/2041-8213/ac9624

Parker Data Used; Magnetohydrodynamics; Alfven waves; Space plasmas; interplanetary turbulence; Heliosphere; Solar wind; 1964; 23; 1544; 830; 711; 1534

The Singular Behavior of the Solar Wind Scaling Features during Parker Solar Probe-BepiColombo Radial Alignment

At the end of 2020 September, the Parker Solar Probe (PSP) and BepiColombo were radially aligned: PSP was orbiting near 0.17 au and BepiColombo near 0.6 au. This geometry is of particular interest for investigating the evolution of solar wind properties at different heliocentric distances by observing the same solar wind plasma parcels. In this work, we use the magnetic field observations from both spacecraft to characterize both the topology of the magnetic field at different heliocentric distances (scalings, high-order sta ...

Alberti, Tommaso; Milillo, Anna; Heyner, Daniel; Hadid, Lina; Auster, Hans-Ulrich; Richter, Ingo; Narita, Yasuhito;

Published by: \apj      Published on: feb

YEAR: 2022     DOI: 10.3847/1538-4357/ac478d

Parker Data Used; 1534; 994; 1964; 830

Tracking of magnetic helicity evolution in the inner heliosphere. A radial alignment study

Context. Magnetic helicity is one of the invariants in ideal magnetohydrodynamics, and its spectral evolution has a substantial amount of information to reveal the mechanism that are behind turbulence in space and astrophysical plasmas. \ Aims: The goal of our study is to observationally characterize the magnetic helicity evolution in the inner heliosphere by resolving the helicity transport in a scale-wise fashion in the spectral domain. \ Methods: The evolution of the magnetic helicity spectrum in the inner heliosphere was ...

Alberti, T.; Narita, Y.; Hadid, L.~Z.; Heyner, D.; Milillo, A.; Plainaki, C.; Auster, H.; Richter, I.;

Published by: \aap      Published on: aug

YEAR: 2022     DOI: 10.1051/0004-6361/202244314

Parker Data Used; Solar wind; Sun: fundamental parameters; Sun: heliosphere

2015

ION-SCALE TURBULENCE IN THE INNER HELIOSPHERE: RADIAL DEPENDENCE

The evolution of the ion-scale plasma turbulence in the inner heliosphere is studied by associating the plasma parameters for hybrid-code turbulence simulations to the radial distance from the Sun via a Solar wind model based mapping procedure. Using a mapping based on a one-dimensional solar wind expansion model, the resulting ion-kinetic scale turbulence is related to the solar wind distance from the Sun. For this purpose the mapping is carried out for various values of ion beta that correspond to the heliocentric dista ...

Comişel, H.; Motschmann, U.; üchner, J.; Narita, Y.; Nariyuki, Y.;

Published by: The Astrophysical Journal      Published on: 10/2015

YEAR: 2015     DOI: 10.1088/0004-637X/812/2/175

parker solar probe; plasmas; Solar Probe Plus; Solar wind; turbulence; waves



  1