PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 18 entries in the Bibliography.


Showing entries from 1 through 18


2022

Langmuir-Slow Extraordinary Mode Magnetic Signature Observations with Parker Solar Probe

Radio emission from interplanetary shocks, planetary foreshocks, and some solar flares occurs in the so-called plasma emission framework. The generally accepted scenario begins with electrostatic Langmuir waves that are driven by a suprathermal electron beam on the Landau resonance. These Langmuir waves then mode-convert to freely propagating electromagnetic emissions at the local plasma frequency f $_ pe $ and/or its harmonic 2f $_ pe $. However, the details of the physics of mode conversion are unclear, and so far the ...

Larosa, A.; de Wit, Dudok; Krasnoselskikh, V.; Bale, S.~D.; Agapitov, O.; Bonnell, J.; Froment, C.; Goetz, K.; Harvey, P.; Halekas, J.; Kretzschmar, M.; MacDowall, R.; Malaspina, David; Moncuquet, M.; Niehof, J.; Pulupa, M.; Revillet, C.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4e85

Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544

2021

Solar wind energy flux observations in the inner heliosphere: First results from Parker Solar Probe

\ Aims: We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii (R$_\ensuremath\odot$). \ Methods: Energy flux was calculated based on electron parameters (density n$_e$, core electron temperature T$_c$, and suprathermal electron temperature T$_h$) obtained from the simplified analysis of the plasma quasi-t ...

Liu, M.; Issautier, K.; Meyer-Vernet, N.; Moncuquet, M.; Maksimovic, M.; Halekas, J.; Huang, J.; Griton, L.; Bale, S.; Bonnell, J.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039615"

Parker Data Used; parker solar probe; Solar Probe Plus

The near-Sun streamer belt solar wind: turbulence and solar wind acceleration

The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R$_\ensuremath\odot$, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence ...

Chen, C.; Chandran, B.; Woodham, L.; Jones, S.; Perez, J.; Bourouaine, S.; Bowen, T.; Klein, K.; Moncuquet, M.; Kasper, J.; Bale, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039872"

Parker Data Used; parker solar probe; Solar Probe Plus

Parker Solar Probe Enters the Magnetically Dominated Solar Corona

The high temperatures and strong magnetic fields of the solar corona form streams of solar wind that expand through the Solar System into interstellar space. At 09:33 UT on 28 April 2021 Parker Solar Probe entered the magnetized atmosphere of the Sun 13 million km above the photosphere, crossing below the Alfv\ en critical surface for five hours into plasma in casual contact with the Sun with an Alfv\ en Mach number of 0.79 and magnetic pressure dominating both ion and electron pressure. The spectrum of turbulence below the ...

Kasper, J.~C.; Klein, K.~G.; Lichko, E.; Huang, Jia; Chen, C.~H.~K.; Badman, S.~T.; Bonnell, J.; Whittlesey, P.~L.; Livi, R.; Larson, D.; Pulupa, M.; Rahmati, A.; Stansby, D.; Korreck, K.~E.; Stevens, M.; Case, A.~W.; Bale, S.~D.; Maksimovic, M.; Moncuquet, M.; Goetz, K.; Halekas, J.~S.; Malaspina, D.; Raouafi, Nour; Szabo, A.; MacDowall, R.; Velli, Marco; de Wit, Thierry; Zank, G.~P.;

Published by: \prl      Published on: dec

YEAR: 2021     DOI: 10.1103/PhysRevLett.127.255101

Parker Data Used

Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe


Aims: We studied the properties and occurrence of narrowband whistler waves and their interaction with strahl electrons observed between 0.17 and 0.26 au during the first encounter of Parker Solar Probe.
Methods: We used Digital Fields Board band-pass filtered (BPF) data from FIELDS to detect the signatures of whistler waves. Additionally parameters derived from the particle distribution functions measured by the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite were used to investigate the plasm ...

Jagarlamudi, V.; de Wit, Dudok; Froment, C.; Krasnoselskikh, V.; Larosa, A.; Bercic, L.; Agapitov, O.; Halekas, J.; Kretzschmar, M.; Malaspina, D.; Moncuquet, M.; Bale, S.; Case, A.; Kasper, J.; Korreck, K.; Larson, D.; Pulupa, M.; Stevens, M.; Whittlesey, P.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039808

waves; scattering; plasmas; Sun: heliosphere; magnetic fields; Physics - Space Physics; Parker Data Used

Parker Solar Probe Evidence for Scattering of Electrons in the Young Solar Wind by Narrowband Whistler-mode Waves

Observations of plasma waves by the Fields Suite and of electrons by the Solar Wind Electrons Alphas and Protons Investigation on the Parker Solar Probe provide strong evidence for pitch angle scattering of strahl-energy electrons by narrowband whistler-mode waves at radial distances less than ∼0.3 au. We present two example intervals of a few hours each that include eight waveform captures with whistler-mode waves and 26 representative electron distributions that are examined in detail. Two were narrow, seventeen were cle ...

Cattell, C.; Breneman, A.; Dombeck, J.; Short, B.; Wygant, J.; Halekas, J.; Case, Tony; Kasper, J.; Larson, D.; Stevens, Mike; Whittesley, P.; Bale, S.; de Wit, Dudok; Goodrich, K.; MacDowall, R.; Moncuquet, M.; Malaspina, D.; Pulupa, M.;

Published by: The Astrophysical Journal      Published on: 04/2021

YEAR: 2021     DOI: 10.3847/2041-8213/abefdd

Parker Data Used; Solar wind; Space plasmas; Plasma astrophysics; Interplanetary physics; Interplanetary particle acceleration; 1534; 1544; 1261; 827; 826; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Source-dependent Properties of Two Slow Solar Wind States

Two states of the slow solar wind are identified from in situ measurements by the Parker Solar Probe (PSP) inside 50 solar radii from the Sun. At such distances the wind measured by PSP has not yet undergone significant transformation related to the expansion and propagation of the wind. We focus in this study on the properties of the quiet solar wind with no magnetic switchbacks. The two states differ by their plasma beta, flux, and magnetic pressure. PSP s magnetic connectivity established with potential field source surfa ...

Griton, Lea; Rouillard, Alexis; Poirier, Nicolas; Issautier, Karine; Moncuquet, Michel; Pinto, Rui;

Published by: The Astrophysical Journal      Published on: 03/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abe309

Parker Data Used; Slow solar wind; Solar wind; Solar coronal holes; Solar coronal streamers; 1873; 1534; 1484; 1486; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

2020

Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere

Context. Switchbacks are discrete angular deflections in the solar wind magnetic field that have been observed throughout the heliosphere. Recent observations by Parker Solar Probe (PSP) have revealed the presence of patches of switchbacks on the scale of hours to days, separated by quieter radial fields. \ Aims: We aim to further diagnose the origin of these patches using measurements of proton temperature anisotropy that can illuminate possible links to formation processes in the solar corona. \ Methods: We fitted 3D bi- ...

Woodham, L.; Horbury, T.; Matteini, L.; Woolley, T.; Laker, R.; Bale, S.; Nicolaou, G.; Stawarz, J.; Stansby, D.; Hietala, H.; Larson, D.; Livi, R.; Verniero, J.; McManus, M.; Kasper, J.; Korreck, K.; Raouafi, N.; Moncuquet, M.; Pulupa, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039415"

Parker Data Used; parker solar probe; Solar Probe Plus

Localized Magnetic-field Structures and Their Boundaries in the Near-Sun Solar Wind from Parker Solar Probe Measurements

One of the discoveries of the Parker Solar Probe during its first encounters with the Sun is ubiquitous presence of relatively small-scale structures standing out as sudden deflections of the magnetic field. They were named "switchbacks" since some of them show a full reversal of the radial component of the magnetic field and then return to "regular" conditions. We carried out an analysis of three typical switchback structures having different characteristics: I. Alfv\ enic structure, where the variations of the magnetic ...

Krasnoselskikh, V.; Larosa, A.; Agapitov, O.; de Wit, Dudok; Moncuquet, M.; Mozer, F.; Stevens, M.; Bale, S.; Bonnell, J.; Froment, C.; Goetz, K.; Goodrich, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Raouafi, N.; Revillet, C.; Velli, M.; Wygant, J.;

Published by: The Astrophysical Journal      Published on: 04/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab7f2d

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Plasma Waves in Space: The Importance of Properly Accounting for the Measuring Device

Electric fields are generally measured or calculated using two intuitive assumptions: (1) the electric field equals the voltage divided by the antenna length when the antenna is electromagnetically short (2) the antenna responds best to electric field along its length. Both assumptions are often incorrect for electrostatic fields because they scale as the Debye length or as the electron gyroradius, which may be smaller than the antenna length. Taking into account this little-known fact enables us to complete or correct se ...

Meyer-Vernet, Nicole; Moncuquet, Michel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019JA027723

electric antennas; parker solar probe; plasma waves; quasi-thermal noise; Solar Probe Plus; Space plasmas

Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the Parker Solar Probe and Comparison with Helios

We discuss the solar wind electron temperatures Te as measured in the nascent solar wind by Parker Solar Probe during its first perihelion pass. The measurements have been obtained by fitting the high-frequency part of quasi-thermal noise spectra recorded by the Radio Frequency Spectrometer. In addition we compare these measurements with those obtained by the electrostatic analyzer discussed in Halekas et al. These first electron observations show an anticorrelation between Te and the wind bulk speed ...

Maksimovic, M.; Bale, S.; c, Ber\v; Bonnell, J.; Case, A.; de Wit, Dudok; Goetz, K.; Halekas, J.; Harvey, P.; Issautier, K.; Kasper, J.; Korreck, K.; Jagarlamudi, Krishna; Lahmiti, N.; Larson, D.; Lecacheux, A.; Livi, R.; MacDowall, R.; Malaspina, D.; c, M.; Meyer-Vernet, N.; Moncuquet, M.; Pulupa, M.; Salem, C.; Stevens, M.; ak, \v; Velli, M.; Whittlesey, P.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab61fc

Parker Data Used; parker solar probe; Solar Probe Plus

The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere

The first two orbits of the Parker Solar Probe spacecraft have enabled the first in situ measurements of the solar wind down to a heliocentric distance of 0.17 au (or 36 R\ âŠ™\ \ R⊙ ). Here, we present an analysis of this data to study solar wind turbulence at 0.17 au and its evolution out to 1 au. While many features remain similar, key differences at 0.17 au include increased turbulence energy levels by more than an order of magnitude, a magnetic field spectral index of -3/2 matching that of t ...

Chen, C.; Bale, S.; Bonnell, J.; Borovikov, D.; Bowen, T.; Burgess, D.; Case, A.; Chandran, B.; de Wit, Dudok; Goetz, K.; Harvey, P.; Kasper, J.; Klein, K.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; Mallet, A.; McManus, M.; Moncuquet, M.; Pulupa, M.; Stevens, M.; Whittlesey, P.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab60a3

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

First In Situ Measurements of Electron Density and Temperature from Quasi-thermal Noise Spectroscopy with Parker Solar Probe /FIELDS

Heat transport in the solar corona and wind is still a major unsolved astrophysical problem. Because of the key role played by electrons, the electron density and temperature(s) are important prerequisites for understanding these plasmas. We present such in situ measurements along the two first solar encounters of the Parker Solar Probe, between 0.5 and 0.17 au from the Sun, revealing different states of the emerging solar wind near the solar activity minimum. These preliminary results are obtained from a simplified analy ...

Moncuquet, Michel; Meyer-Vernet, Nicole; Issautier, Karine; Pulupa, Marc; Bonnell, J.; Bale, Stuart; de Wit, Thierry; Goetz, Keith; Griton, Lea; Harvey, Peter; MacDowall, Robert; Maksimovic, Milan; Malaspina, David;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5a84

Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere

We present initial results from the Radio Frequency Spectrometer, the high-frequency component of the FIELDS experiment on the Parker Solar Probe (PSP). During the first PSP solar encounter (2018 November), only a few small radio bursts were observed. During the second encounter (2019 April), copious type III radio bursts occurred, including intervals of radio storms where bursts occurred continuously. In this paper, we present initial observations of the characteristics of type III radio bursts in the inner heliosphere, ...

Pulupa, Marc; Bale, Stuart; Badman, Samuel; Bonnell, J.; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Hegedus, Alexander; Kasper, Justin; Korreck, Kelly; Krasnoselskikh, Vladimir; Larson, Davin; Lecacheux, Alain; Livi, Roberto; MacDowall, Robert; Maksimovic, Milan; Malaspina, David; Oliveros, Juan; Meyer-Vernet, Nicole; Moncuquet, Michel; Stevens, Michael; Whittlesey, Phyllis;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5dc0

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

2019

Highly structured slow solar wind emerging from an equatorial coronal hole

During the solar minimum, when the Sun is at its least active, the solar wind is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfv\ enic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain; theories and observations suggest that they may originate at the tips of ...

Bale, S.; Badman, S.; Bonnell, J.; Bowen, T.; Burgess, D.; Case, A.; Cattell, C.; Chandran, B.; Chaston, C.; Chen, C.; Drake, J.; de Wit, Dudok; Eastwood, J.; Ergun, R.; Farrell, W.; Fong, C.; Goetz, K.; Goldstein, M.; Goodrich, K.; Harvey, P.; Horbury, T.; Howes, G.; Kasper, J.; Kellogg, P.; Klimchuk, J.; Korreck, K.; Krasnoselskikh, V.; Krucker, S.; Laker, R.; Larson, D.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Martinez-Oliveros, J.; McComas, D.; Meyer-Vernet, N.; Moncuquet, M.; Mozer, F.; Phan, T.; Pulupa, M.; Raouafi, N.; Salem, C.; Stansby, D.; Stevens, M.; Szabo, A.; Velli, M.; Woolley, T.; Wygant, J.;

Published by: Nature      Published on: 12/2019

YEAR: 2019     DOI: 10.1038/s41586-019-1818-7

Parker Data Used; parker solar probe; Solar Probe Plus

2017

Quasi-thermal noise spectroscopy: The art and the practice

Quasi-thermal noise spectroscopy is an efficient tool for measuring in situ macroscopic plasma properties in space, using a passive wave receiver at the ports of an electric antenna. This technique was pioneered on spinning spacecraft carrying very long dipole antennas in the interplanetary medium\textemdashlike ISEE-3 and Ulysses\textemdashwhose geometry approached a "theoretician\textquoterights dream." The technique has been extended to other instruments in various types of plasmas on board different spacecraft and wil ...

Meyer-Vernet, N.; Issautier, K.; Moncuquet, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024449

electric antennas; magnetospheres; parker solar probe; plasma waves; radio receivers; Solar Probe Plus; Solar wind; velocity distributions

The solar probe plus radio frequency spectrometer: Measurement requirements, analog design, and digital signal processing

The Radio Frequency Spectrometer (RFS) is a two-channel digital receiver and spectrometer, which will make remote sensing observations of radio waves and in situ measurements of electrostatic and electromagnetic fluctuations in the solar wind. A part of the FIELDS suite for Solar Probe Plus (SPP), the RFS is optimized for measurements in the inner heliosphere, where solar radio bursts are more intense and the plasma frequency is higher compared to previous measurements at distances of 1 AU or greater. The inputs to the RF ...

Pulupa, M.; Bale, S.; Bonnell, J.; Bowen, T.; Carruth, N.; Goetz, K.; Gordon, D.; Harvey, P.; Maksimovic, M.; inez-Oliveros, J.; Moncuquet, M.; Saint-Hilaire, P.; Seitz, D.; Sundkvist, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023345

electric field; FIELDS; magnetic field; Parker Data Used; parker solar probe; quasi-thermal noise; radio; Solar Probe Plus

2016

The FIELDS Instrument Suite for Solar Probe Plus

NASA\textquoterights Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument conce ...

Bale, S.; Goetz, K.; Harvey, P.; Turin, P.; Bonnell, J.; de Wit, T.; Ergun, R.; MacDowall, R.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.; Burgess, D.; Cattell, C.; Chandran, B.; Chaston, C.; Chen, C.; Choi, M.; Connerney, J.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.; Farrell, W.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.; Hayes, L.; Hinze, J.; Hollweg, J.; Horbury, T.; Howard, R.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.; Kellogg, P.; Kien, M.; Klimchuk, J.; Krasnoselskikh, V.; Krucker, S.; Lynch, J.; Maksimovic, M.; Malaspina, D.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.; Mozer, F.; Murphy, S.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.; Salem, C.; Seitz, D.; Sheppard, D.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.;

Published by: Space Science Reviews      Published on: 12/2016

YEAR: 2016     DOI: 10.1007/s11214-016-0244-5

Coronal heating; Parker Data Used; parker solar probe; Solar Probe Plus



  1