Notice:
|
Found 14 entries in the Bibliography.
Showing entries from 1 through 14
2022 |
Clouds of Spacecraft Debris Liberated by Hypervelocity Dust Impacts on Parker Solar Probe Hypervelocity impacts on spacecraft surfaces produce a wide range of effects including transient plasma clouds, surface material ablation, and for some impacts, the liberation of spacecraft material as debris clouds. This study examines debris-producing impacts on the Parker Solar Probe spacecraft as it traverses the densest part of the zodiacal cloud: the inner heliosphere. Hypervelocity impacts by interplanetary dust grains on the spacecraft that produce debris clouds are identified and examined. Impact-generated plasma an ... Malaspina, David; Stenborg, Guillermo; Mehoke, Doug; Al-Ghazwi, Adel; Shen, Mitchell; Hsu, Hsiang-Wen; Iyer, Kaushik; Bale, Stuart; de Wit, Thierry; Published by: \apj Published on: jan YEAR: 2022   DOI: 10.3847/1538-4357/ac3bbb |
2019 |
Successful development of high temperature systems is complex and difficult. Limitations in testing, manufacturing and materials means that design and testing of such systems is challenging. NASA s Parker Solar Probe (PSP) Spacecraft built by the Johns Hopkins Applied Physics Laboratory was launched in August 2018 and is measuring the Sun s atmosphere in situ. A critical technology development which made this mission possible is the 4.5 inch-thick Thermal Protection System (TPS) that has to withstand 2500°F and protect t ... Congdon, Elizabeth; Mehoke, Douglas; Conkey, Shelly; Schaefer, Ed; Abel, Elisabeth; Published by: Proceedings of the International Astronautical Congress, IAC Published on: Heat shielding; High temperature effects; High temperature engineering; Manufacture; NASA; Probes; Thermal insulating materials; Parker Engineering |
2017 |
Interplanetary dust particle shielding capability of blanketed spacecraft honeycomb structure To assure mission success of the Solar Probe Plus (SPP) spacecraft, defined by achieving its final mission orbit with a perihelion distance of less than 10 solar radii, it is necessary to define the dust hypervelocity impact (HVI) protection levels provided by its Multi-Layer Insulation (MLI)/thermal blankets with a reliability that is on par with that available for metallic Whipple shields. Recently, we presented an experimentally validated approach being developed at the Johns Hopkins University Applied Physics Laboratory ... Iyer, Kaushik; Mehoke, Douglas; Batra, Romesh; Published by: IEEE Aerospace Conference Proceedings Published on: Aerospace vehicles; Aluminum; Ballistics; Coremaking; Dust; Honeycomb structures; Interplanetary flight; Orbits; Particle size; Particle size analysis; Sandwich structures; Sensitivity analysis; Shielding; Parker Engineering |
2015 |
Glass surface spall size resulting from interplanetary dust impacts The size of relatively large dynamic conchoidal fractures, i.e., surface spalls, immediately adjacent to and around interplanetary dust (IDP) hypervelocity impact (HVI) craters or pits in glass substrates is relevant to spacecraft solar cell and science instrument lens performance metrics, as well as glass pane design and safety in manned missions. This paper presents an analysis of the diameter of surface spalls in glass for the Solar Probe Plus (SPP) spacecraft, whose solar arrays and instruments must survive a 7-year miss ... Iyer, Kaushik; Mehoke, Douglas; Chadegani, Alireza; Batra, Romesh; Published by: IEEE Aerospace Conference Proceedings Published on: Ballistics; Dust; Glass; Particle size analysis; Solar cell arrays; Spalling; Substrates; Parker Engineering |
Glass Surface Spall Size Resulting From Interplanetary Dust Impacts The size of relatively large dynamic conchoidal fractures, i.e., surface spalls, immediately adjacent to and around interplanetary dust (IDP) hypervelocity impact (HVI) craters or pits in glass substrates is relevant to spacecraft solar cell and science instrument lens performance metrics, as well as glass pane design and safety in manned missions. This paper presents an analysis of the diameter of surface spalls in glass for the Solar Probe Plus (SPP) spacecraft, whose solar arrays and instruments must survive a 7-year miss ... Iyer, Kaushik; Mehoke, Douglas; Chadegani, Alireza; Batra, Romesh; Published by: Published on: YEAR: 2015   DOI: 10.1109/AERO.2015.7119067 |
2014 |
Interplanetary dust particle shielding capability of spacecraft multi-layer insulation The Solar Probe Plus (SPP) spacecraft is expected to encounter unprecedented levels of interplanetary dust particle (IDP) exposure during its approximately 7-year journey. To assure mission success it is necessary to define the dust hypervelocity impact (HVI) protection levels provided by its Multi-Layer Insulation (MLI)/thermal blankets with a reliability that is on par with that available for metallic Whipple shields. Development of a new ballistic limit equation (BLE) in the 7-150 km/s HVI range for representative 2-wall ... Iyer, Kaushik; Mehoke, Douglas; Batra, Romesh; Published by: IEEE Aerospace Conference Proceedings Published on: Aluminum alloys; Ballistics; Dust; Fused silica; Particle size; Particle size analysis; Polyimides; Ternary alloys; Titanium alloys; Parker Engineering |
2013 |
Selection of Critical Design Parameters for MMOD Protection in Interplanetary Missions This paper presents a methodology for the selection of critical design-parameters for the design of Micro Meteoroid and Orbital Debris (MMOD) spacecraft protection based on a modified implementation of the concept of the Probability of No Impact (PNI). The PNI methodology, based on Poisson s discrete statistics, has been widely used to determine critical particle sizes for the design of protection systems. However, it does not provide guidelines for the selection of the design impact speed, especially when the impact speed h ... Carrasco, Cesar; Mendez, Sergio; Mehoke, Douglas; Published by: Published on: YEAR: 2013   DOI: 10.1016/j.proeng.2013.05.066 |
Hypervelocity Impact Response of Ti-6Al-4V and Commercially Pure Titanium Titanium alloy, Ti-6Al-4V, and commercially pure (CP) Titanium will be used to protect the Solar Probe Plus (SPP) spacecraft against hypervelocity impacts by solar dust particles. The results of six hypervelocity impact (HVI) tests performed on Ti-6Al-4V and CP monolithic samples (3 each) arc evaluated in terms of cratering and spall damage, and compared with crater depth and spall initiation predictions using the Ballistic Limit Equation (BLE) for Titanium shields developed at NASA Johnson Space Center and hydrocode computa ... Iyer, Kaushik; Poormon, Kevin; Deacon, Ryan; Mehoke, Douglas; Swaminathan, P.; Brown, Robert; Published by: Published on: YEAR: 2013   DOI: 10.1016/j.proeng.2013.05.016 |
2012 |
Use of hydrocode modeling to develop advanced MMOD shielding designs A multi-physics computations-based methodology for space debris hypervelocity impact (HVI) damage mitigation is presented. Specifically, improved debris mitigation through development of innovative, lightweight structural designs is described. The methodology has been applied to the design of the Solar Probe Plus (SPP) spacecraft to mitigate extreme solar microdust hypervelocity impacts (50-300 km/s) by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). The methodology combines hydrocode computations of the c ... Iyer, Kaushik; Swaminathan, P.K.; Mehoke, Douglas; Carrasco, Cesar; Brown, Robert; Batra, Romesh; Published by: IEEE Aerospace Conference Proceedings Published on: |
A review of the Solar Probe Plus dust protection approach The Solar Probe Plus (SPP) spacecraft will go closer to the Sun than any manmade object has gone before, which has required the development of new thermal and micrometeoroid protection technologies. During the 24 solar orbits of the mission, the spacecraft will encounter a thermal environment that is 50 times more severe than any previous spacecraft. It will also travel through a dust environment previously unexplored, and be subject to particle hypervelocity impacts (HVI) at velocities much larger than anything previously e ... Mehoke, Douglas; Brown, Robert; Swaminathan, P.K.; Kerley, Gerald; Carrasco, Cesar; Iyer, Kaushik; Published by: IEEE Aerospace Conference Proceedings Published on: Dust; Earth (planet); Interplanetary flight; Particle size analysis; Probes; Space debris; Spacecraft; Parker Engineering |
Hyper velocity protection developments on the solar probe plus mission The Solar Probe Plus (SPP) spacecraft will go closer to the Sun than any manmade object has gone before. The mission includes both solar flux and micrometeoroid environments much more severe than anything experienced by previous spacecraft. As a result, new analytical and testing methodologies are being developed to ensure the success of the mission. One of the major efforts is the development of an analytical approach for hypervelocity impacts (HVI) at speeds up to 300 km/s. To date, this dust study has made several notable ... Mehoke, Douglas; Swaminathan, P.K.; Carrasco, Cesar; Brown, Robert; Iyer, Kaushik; Published by: Proceedings of the International Astronautical Congress, IAC Published on: Cooling systems; Dust; Earth (planet); Equations of state; Interplanetary flight; Probes; Thermoelectric equipment; Parker Engineering |
Use of Hydrocode Modeling to Develop Advanced MMOD Shielding Designs A multi-physics computations-based methodology for space debris hypervelocity impact (HVI) damage mitigation is presented. Specifically, improved debris mitigation through development of innovative, lightweight structural designs is described. The methodology has been applied to the design of the Solar Probe Plus (SPP) spacecraft to mitigate extreme solar microdust hypervelocity impacts (50-300 km/s) by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). The methodology combines hydrocode computations of the c ... Iyer, Kaushik; Mehoke, Douglas; Brown, Robert; Swaminathan, P.; Carrasco, Cesar; Batra, Romesh; Published by: Published on: YEAR: 2012   DOI: 10.1109/AERO.2012.6187075 |
2010 |
Ceramic coatings for the solar probe plus mission A study was conducted to develop the coatings needed to protect the Solar Probe Plus Thermal Protection System (TPS) from the harsh environment. The TPS encountered harsh environment during its mission close to the sun, facing significant solar fluxes. The first part of the study addressed the way a coating s microstructure affected its optical properties and the way coatings were designed to maintain the right microstructure over temperature. The study was led by a researcher from the Advanced Technology Laboratory of the W ... Mehoke, D.; Congdon, E.; , Drewry; Eddins, C.; Deacon, R.; Wolf, T.; Hahn, D.; King, D.; Nagle, D.; Buchta, M.; Zhang, D.; Hemker, K.; Spicer, J.; Jones, J.; Ryan, S.; Schlichter, G.; Published by: Johns Hopkins APL Technical Digest (Applied Physics Laboratory) Published on: Grain growth; Microstructure; Optical properties; Probes; Parker Engineering |
Development of a high-temperature optical coating for thermal management on solar probe plus NASA s Solar Probe Plus (SPP) is approaching within 9.5 solar radii from the center of the sun. The SPP thermal protection system (TPS) is a 2.7 meter heat shield. The heat shield reaches temperatures of 1400°C on its front surface, its worst thermal case, and is subjected to launch loads, its worst mechanical case. The front surface of the thermal protection system is coated with an optically white coating in order to reduce the front surface temperature of the TPS and reduce the resulting heat flow into the spacecraft. ... Congdon, Elizabeth; Mehoke, Douglas; Buchta, Mark; Nagle, Dennis; Zhang, Dajie; Spicer, James; Published by: 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Published on: Heat shielding; Heat transfer; NASA; Optical coatings; Probes; Thermal insulating materials; Thermal variables control; Parker Engineering |
1