PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 11 entries in the Bibliography.


Showing entries from 1 through 11


2022

On the utility of flux rope models for CME magnetic structure below 30 R$_\ensuremath\odot$

We present a comprehensive analysis of the three-dimensional magnetic flux rope structure generated during the Lynch et al. (2019, ApJ 880:97) magnetohydrodynamic (MHD) simulation of a global-scale, 360 \textdegree -wide streamer blowout coronal mass ejection (CME) eruption. We create both fixed and moving synthetic spacecraft to generate time series of the MHD variables through different regions of the flux rope CME. Our moving spacecraft trajectories are derived from the spatial coordinates of Parker Solar Probe s past enc ...

Lynch, Benjamin; Al-Haddad, Nada; Yu, Wenyuan; Palmerio, Erika; Lugaz, No\;

Published by: Advances in Space Research      Published on: sep

YEAR: 2022     DOI: 10.1016/j.asr.2022.05.004

Parker Data Used; magnetohydrodynamics (MHD); Solar corona; Coronal mass ejection (CME); magnetic flux rope; Parker Solar Probe (PSP); Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Widespread 1-2 MeV Energetic Particles Associated with Slow and Narrow Coronal Mass Ejections: Parker Solar Probe and STEREO Measurements

Suprathermal ions in the corona are thought to serve as seed particles for large gradual solar energetic particle (SEP) events associated with fast and wide coronal mass ejections (CMEs). A better understanding of the role of suprathermal particles as seed populations for SEP events can be made by using observations close to the Sun. We study a series of SEP events observed by the Integrated Science Investigation of the Sun (IS\ensuremath\odotIS) suite on board the Parker Solar Probe (PSP) from 2020 May 27 to June 2, during ...

Zhuang, Bin; Lugaz, No\; Lario, David;

Published by: \apj      Published on: jan

YEAR: 2022     DOI: 10.3847/1538-4357/ac3af2

Parker Data Used; 1491; 310; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

2021

Comparative Analysis of the 2020 November 29 Solar Energetic Particle Event Observed by Parker Solar Probe

We analyze two specific features of the intense solar energetic particle (SEP) event observed by Parker Solar Probe (PSP) between 2020 November 29 and 2020 December 2. The interplanetary counterpart of the coronal mass ejection (CME) on 2020 November 29 that generated the SEP event (hereafter ICME-2) arrived at PSP (located at 0.8 au from the Sun) on 2020 December 1. ICME-2 was preceded by the passage of an interplanetary shock at 18:35 UT on 2020 November 30 (hereafter S2), that in turn was preceded by another ICME (i.e., I ...

Lario, D.; Richardson, I.~G.; Palmerio, E.; Lugaz, N.; Bale, S.~D.; Stevens, M.~L.; Cohen, C.~M.~S.; Giacalone, J.; Mitchell, D.~G.; Szabo, A.; Nieves-Chinchilla, T.; Wilson, L.~B.; Christian, E.~R.; Hill, M.~E.; McComas, D.~J.; McNutt, R.~L.; Schwadron, N.~A.; Wiedenbeck, M.~E.;

Published by: \apj      Published on: oct

YEAR: 2021     DOI: 10.3847/1538-4357/ac157f

Parker Data Used; Solar energetic particles; Interplanetary shocks; Solar coronal mass ejections; interplanetary magnetic fields; 1491; 829; 310; 824

First Simultaneous In Situ Measurements of a Coronal Mass Ejection by Parker Solar Probe and STEREO-A

We present the first Parker Solar Probe mission (PSP)-observed coronal mass ejection (CME) that hits a second spacecraft before the end of the PSP encounter, providing an excellent opportunity to study short-term CME evolution. The CME was launched from the Sun on 2019 October 10 and was measured in situ at PSP on 2019 October 13 and at STEREO-A on 2019 October 14. The small, but not insignificant, radial (\raisebox-0.5ex\textasciitilde0.15 au) and longitudinal (\raisebox-0.5ex\textasciitilde8\textdegree) separation between ...

Winslow, Reka; Lugaz, No\; Scolini, Camilla; Galvin, Antoinette;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac0821

Solar coronal mass ejections; Heliosphere; 310; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Evolution of Interplanetary Coronal Mass Ejection Complexity: A Numerical Study through a Swarm of Simulated Spacecraft

In-situ measurements carried out by spacecraft in radial alignment are critical to advance our knowledge on the evolutionary behavior of coronal mass ejections (CMEs) and their magnetic structures during propagation through interplanetary space. Yet, the scarcity of radially aligned CME crossings restricts investigations on the evolution of CME magnetic structures to a few case studies, preventing a comprehensive understanding of CME complexity changes during propagation. In this Letter, we perform numerical simulations of C ...

Scolini, Camilla; Winslow, Reka; Lugaz, No\; Poedts, Stefaan;

Published by: \apjl      Published on: aug

YEAR: 2021     DOI: 10.3847/2041-8213/ac0d58

Solar coronal mass ejections; Solar wind; Parker Data Used; interplanetary magnetic fields; Corotating streams; 310; 1534; 824; 314; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

2020

Prediction of the In Situ Coronal Mass Ejection Rate for Solar Cycle 25: Implications for Parker Solar Probe In Situ Observations

The Parker Solar Probe (PSP) and Solar Orbiter missions are designed to make groundbreaking observations of the Sun and interplanetary space within this decade. We show that a particularly interesting in situ observation of an interplanetary coronal mass ejection (ICME) by PSP may arise during close solar flybys (<0.1 au). During these times, the same magnetic flux rope inside an ICME could be observed in situ by PSP twice, by impacting its frontal part as well as its leg. Investigating the odds of this situation, we forecas ...

Möstl, Christian; Weiss, Andreas; Bailey, Rachel; Reiss, Martin; Amerstorfer, Tanja; Hinterreiter, Jürgen; Bauer, Maike; McIntosh, Scott; Lugaz, No\; Stansby, David;

Published by: The Astrophysical Journal      Published on: 11/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb9a1

Solar coronal mass ejection; Solar storm; Ejecta; space weather; Solar system; Solar wind; Solar Physics; interplanetary magnetic fields; Solar magnetic fields

The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au

The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was ...

Lario, D.; Balmaceda, L.; Alzate, N.; Mays, M.; Richardson, I.; Allen, R.; Florido-Llinas, M.; Nieves-Chinchilla, T.; Koval, A.; Lugaz, N.; Jian, L.; Arge, C.; Macneice, P.; Odstrcil, D.; Morgan, H.; Szabo, A.; Desai, M.; Whittlesey, P.; Stevens, M.; Ho, G.; Luhmann, J.;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab9942

Parker Data Used; parker solar probe; Solar Probe Plus

ICME Evolution in the Inner Heliosphere

ICMEs (interplanetary coronal mass ejections), the heliospheric counterparts of what is observed with coronagraphs at the Sun as CMEs, have been the subject of intense interest since their close association with geomagnetic storms was established in the 1980s. These major interplanetary plasma and magnetic field transients, often preceded and accompanied by solar energetic particles (SEPs), interact with planetary magnetospheres, ionospheres, and upper atmospheres in now fairly well-understood ways, although their details ...

Luhmann, J.; Gopalswamy, N.; Jian, L.; Lugaz, N.;

Published by: Solar Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01624-0

CME; ICME; parker solar probe; Solar Probe Plus; space weather

2019

Evolution of Coronal Mass Ejection Properties in the Inner Heliosphere: Prediction for the Solar Orbiter and Parker Solar Probe

The evolution of the magnetic field and plasma quantities inside a coronal mass ejection (CME) with distance are known from statistical studies using data from 1 au monitors, planetary missions, Helios, and Ulysses. This does not cover the innermost heliosphere, below 0.29 au, where no data are yet publicly available. Here, we describe the evolution of the properties of simulated CMEs in the inner heliosphere using two different initiation mechanisms. We compare the radial evolution of these properties with that found fro ...

Al-Haddad, Nada; Lugaz, No\; Poedts, Stefaan; Farrugia, Charles; Nieves-Chinchilla, Teresa; Roussev, Ilia;

Published by: The Astrophysical Journal      Published on: 10/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab4126

Astrophysics - Solar and Stellar Astrophysics; Ejecta; interplanetary magnetic fields; Interplanetary physics; parker solar probe; Solar coronal mass ejections; Solar Probe Plus

Generic Magnetic Field Intensity Profiles of Interplanetary Coronal Mass Ejections at Mercury, Venus, and Earth From Superposed Epoch Analyses

Janvier, Miho; Winslow, Reka; Good, Simon; Bonhomme, Elise; emoulin, Pascal; Dasso, Sergio; Möstl, Christian; Lugaz, No\; Amerstorfer, Tanja; e, Elie; Boakes, Peter;

Published by: Journal of Geophysical Research (Space Physics)      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018JA025949

coronal mass ejections; heliospheric physics; data analysis; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

2018

Opening a Window on ICME-driven GCR Modulation in the Inner Solar System

Interplanetary coronal mass ejections (ICMEs) often cause Forbush decreases (Fds) in the flux of galactic cosmic rays (GCRs). We investigate how a single ICME, launched from the Sun on 2014 February 12, affected GCR fluxes at Mercury, Earth, and Mars. We use GCR observations from MESSENGER at Mercury, ACE/LRO at the Earth/Moon, and MSL at Mars. We find that Fds are steeper and deeper closer to the Sun, and that the magnitude of the magnetic field in the ICME magnetic ejecta as well as the \textquotedblleftstrength\textquo ...

Winslow, Reka; Schwadron, Nathan; Lugaz, \; Guo, Jingnan; Joyce, Colin; Jordan, Andrew; Wilson, Jody; Spence, Harlan; Lawrence, David; Wimmer-Schweingruber, Robert; Mays, Leila;

Published by: The Astrophysical Journal      Published on: 04/2018

YEAR: 2018     DOI: 10.3847/1538-4357/aab098

parker solar probe; Solar Probe Plus; Sun: coronal mass ejections: CMEs; Sun: evolution; Sun: heliosphere



  1