PSP Bibliography



Found 147 entries in the Bibliography.


Showing entries from 1 through 50


2020

Shear-driven Transition to Isotropically Turbulent Solar Wind Outside the Alfv\ en Critical Zone

Motivated by prior remote observations of a transition from striated\ solar\ coronal structures to more isotropic "flocculated" fluctuations, we propose that the dynamics of the inner\ solar\ wind just outside the Alfven critical zone, and in the vicinity of the first beta = 1 surface, is powered by the relative velocities of adjacent coronal magnetic flux tubes. We suggest that large-amplitude flow contrasts are magnetically constrained at lower altitude but shear-driven dynamics are triggered as such ...

Ruffolo, D.; Matthaeus, W.; Chhiber, R.; Usmanov, A.; Yang, Y.; Bandyopadhyay, R.; Parashar, T.; Goldstein, M.; DeForest, C.; Wan, M.; Chasapis, A.; Maruca, B.; Velli, M.; Kasper, J.;

YEAR: 2020     DOI: 10.3847/1538-4357/abb594

Parker Data Used; parker solar probe; Solar Probe Plus

The Solar Wind Angular Momentum Flux as Observed by Parker Solar Probe

he long-term evolution of the Sun\textquoterights rotation period cannot be directly observed, and is instead inferred from trends in the measured rotation periods of other Sun-like stars. Assuming the Sun spins down as it ages, following rotation rate proportional to age(-1/2), requires the current\ solar\ angular momentum (AM) loss rate to be around 6 x 10(30)erg. Magnetohydrodynamic models, and previous observations of the\ solar\ wind (from the Helios and Wind spacecraft), generally predict a value ...

Finley, Adam; Matt, Sean; eville, Victor; Pinto, Rui; Owens, Mathew; Kasper, Justin; Korreck, Kelly; Case, A.; Stevens, Michael; Whittlesey, Phyllis; Larson, Davin; Livi, Roberto;

YEAR: 2020     DOI: 10.3847/2041-8213/abb9a5

Parker Data Used; parker solar probe; Solar evolution; Solar Physics; Solar Probe Plus; Solar rotation; Solar wind; Stellar evolution; Stellar physics; Stellar rotation

On the Scaling Properties of Magnetic-field Fluctuations through the Inner Heliosphere

Although the interplanetary magnetic-field variability has been extensively investigated in situ using data from several space missions, newly launched missions providing high-resolution measures and approaching the Sun offer the possibility to study the multiscale variability in the innermost\ solar\ system. Here, using\ Parker\ Solar\ Probe\ measurements, we investigate the scaling properties of\ solar\ wind magnetic-field fluctuations at different heliocentric distances. The resu ...

Alberti, Tommaso; Laurenza, Monica; Consolini, Giuseppe; Milillo, Anna; Marcucci, Maria; Carbone, Vincenzo; Bale, Stuart;

YEAR: 2020     DOI: 10.3847/1538-4357/abb3d2

Chaos; interplanetary magnetic fields; interplanetary turbulence; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Time series analysis

On the Scaling Properties of Magnetic-field Fluctuations through the Inner Heliosphere

Although the interplanetary magnetic-field variability has been extensively investigated in situ using data from several space missions, newly launched missions providing high-resolution measures and approaching the Sun offer the possibility to study the multiscale variability in the innermost\ solar\ system. Here, using\ Parker\ Solar\ Probe\ measurements, we investigate the scaling properties of\ solar\ wind magnetic-field fluctuations at different heliocentric distances. The resu ...

Alberti, Tommaso; Laurenza, Monica; Consolini, Giuseppe; Milillo, Anna; Marcucci, Maria; Carbone, Vincenzo; Bale, Stuart;

YEAR: 2020     DOI: 10.3847/1538-4357/abb3d2

Chaos; interplanetary magnetic fields; interplanetary turbulence; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Time series analysis

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes

Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretic ...

Florido-Llinas, M.; Nieves-Chinchilla, T.; Linton, M.;

YEAR: 2020     DOI: 10.1007/s11207-020-01687-z

coronal mass ejections; Flux ropes; Kink instability; magnetic fields; parker solar probe; Solar Probe Plus; Twist distribution

Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes

Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretic ...

Florido-Llinas, M.; Nieves-Chinchilla, T.; Linton, M.;

YEAR: 2020     DOI: 10.1007/s11207-020-01687-z

coronal mass ejections; Flux ropes; Kink instability; magnetic fields; parker solar probe; Solar Probe Plus; Twist distribution

PIC Simulations of Microinstabilities and Waves at Near-Sun Solar Wind Perpendicular Shocks: Predictions for Parker Solar Probe and Solar Orbiter

Microinstabilities and waves excited at moderate-Mach-number perpendicular shocks in the near-Sun solar wind are investigated by full particle-in-cell simulations. By analyzing the dispersion relation of fluctuating field components directly issued from the shock simulation, we obtain key findings concerning wave excitations at the shock front: (1) at the leading edge of the foot, two types of electrostatic (ES) waves are observed. The relative drift of the reflected ions versus the electrons triggers an electron cyclotro ...

Yang, Zhongwei; Liu, Ying; Matsukiyo, Shuichi; Lu, Quanming; Guo, Fan; Liu, Mingzhe; Xie, Huasheng; Gao, Xinliang; Guo, Jun;

YEAR: 2020     DOI: 10.3847/2041-8213/abaf59

Interplanetary shocks; parker solar probe; Plasma astrophysics; Plasma physics; Solar Probe Plus; Space plasmas

PIC Simulations of Microinstabilities and Waves at Near-Sun Solar Wind Perpendicular Shocks: Predictions for Parker Solar Probe and Solar Orbiter

Microinstabilities and waves excited at moderate-Mach-number perpendicular shocks in the near-Sun solar wind are investigated by full particle-in-cell simulations. By analyzing the dispersion relation of fluctuating field components directly issued from the shock simulation, we obtain key findings concerning wave excitations at the shock front: (1) at the leading edge of the foot, two types of electrostatic (ES) waves are observed. The relative drift of the reflected ions versus the electrons triggers an electron cyclotro ...

Yang, Zhongwei; Liu, Ying; Matsukiyo, Shuichi; Lu, Quanming; Guo, Fan; Liu, Mingzhe; Xie, Huasheng; Gao, Xinliang; Guo, Jun;

YEAR: 2020     DOI: 10.3847/2041-8213/abaf59

Interplanetary shocks; parker solar probe; Plasma astrophysics; Plasma physics; Solar Probe Plus; Space plasmas

Polytropic Behavior of Solar Wind Protons Observed by Parker Solar Probe

A polytropic process describes the transition of a fluid from one state to another through a specific relationship between the fluid density and temperature. The value of the polytropic index that governs this relationship determines the heat transfer and the effective degrees of freedom during a specific process. In this study, we analyze\ solar\ wind proton plasma measurements, obtained by the Faraday cup instrument on board the\ Parker\ Solar\ Probe. We examine the large-scale variations of the ...

Nicolaou, Georgios; Livadiotis, George; Wicks, Robert; Verscharen, Daniel; Maruca, Bennett;

YEAR: 2020     DOI: 10.3847/1538-4357/abaaae

Parker Data Used; parker solar probe; Solar Physics; Solar Probe Plus; Solar wind; Space plasmas

The Solar Origin of Particle Events Measured by Parker Solar Probe

During the second solar encounter phase of Parker Solar Probe (PSP), two small solar energetic particle (SEP) events were observed by the Integrated Science Investigation of the Sun, on 2019 April 2 and 4. At the time, PSP was approaching its second perihelion at a distance of \~24.8 million kilometers from the solar center, it was in near-radial alignment with STEREO-A and in quadrature with Earth. During the two SEP events multiple narrow ejections and a streamer-blowout coronal mass ejection (SBO-CME) originated from a ...

Kouloumvakos, Athanasios; Vourlidas, Angelos; Rouillard, Alexis; Roelof, Edmond; Leske, Rick; Pinto, Rui; Poirier, Nicolas;

YEAR: 2020     DOI: 10.3847/1538-4357/aba5a1

Parker Data Used; parker solar probe; Solar coronal mass ejection shocks; Solar coronal mass ejections; Solar energetic particles; Solar particle emission; Solar Probe Plus

The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au

The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was ...

Lario, D.; Balmaceda, L.; Alzate, N.; Mays, M.; Richardson, I.; Allen, R.; Florido-Llinas, M.; Nieves-Chinchilla, T.; Koval, A.; Lugaz, N.; Jian, L.; Arge, C.; Macneice, P.; Odstrcil, D.; Morgan, H.; Szabo, A.; Desai, M.; Whittlesey, P.; Stevens, M.; Ho, G.; Luhmann, J.;

YEAR: 2020     DOI: 10.3847/1538-4357/ab9942

parker solar probe; Solar Probe Plus

The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au

The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was ...

Lario, D.; Balmaceda, L.; Alzate, N.; Mays, M.; Richardson, I.; Allen, R.; Florido-Llinas, M.; Nieves-Chinchilla, T.; Koval, A.; Lugaz, N.; Jian, L.; Arge, C.; Macneice, P.; Odstrcil, D.; Morgan, H.; Szabo, A.; Desai, M.; Whittlesey, P.; Stevens, M.; Ho, G.; Luhmann, J.;

YEAR: 2020     DOI: 10.3847/1538-4357/ab9942

Parker Data Used; parker solar probe; Solar Probe Plus

Using Stereoscopic Observations of Cometary Plasma Tails to Infer Solar Wind Speed

Detection of the solar wind speed near the Sun is significant in understanding the heating and acceleration of the solar wind. Cometary plasma tails have long been used as natural probes for solar wind speed; previous solar wind speed estimates via plasma tails, however, were based on comet images from a single viewpoint, and the projection effect may influence the result. Using stereoscopic observations from the Solar Terrestrial Relations Observatory and the Solar and Heliospheric Observatory, we three-dimensionally rec ...

Cheng, Long; Zhang, Quanhao; Wang, Yuming; Li, Xiaolei; Liu, Rui;

YEAR: 2020     DOI: 10.3847/1538-4357/ab93b6

1534; parker solar probe; Solar Probe Plus

Using Stereoscopic Observations of Cometary Plasma Tails to Infer Solar Wind Speed

Detection of the solar wind speed near the Sun is significant in understanding the heating and acceleration of the solar wind. Cometary plasma tails have long been used as natural probes for solar wind speed; previous solar wind speed estimates via plasma tails, however, were based on comet images from a single viewpoint, and the projection effect may influence the result. Using stereoscopic observations from the Solar Terrestrial Relations Observatory and the Solar and Heliospheric Observatory, we three-dimensionally rec ...

Cheng, Long; Zhang, Quanhao; Wang, Yuming; Li, Xiaolei; Liu, Rui;

YEAR: 2020     DOI: 10.3847/1538-4357/ab93b6

1534; parker solar probe; Solar Probe Plus

Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence

We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U., with a power-law index of around -4 . Based on our measurements, we demonstrate that either a significant (\>50 \%) fraction of the total turbulent energy flux is dissipated in this range of scales ...

Bowen, Trevor; Mallet, Alfred; Bale, Stuart; Bonnell, J.; Case, Anthony; Chandran, Benjamin; Chasapis, Alexandros; Chen, Christopher; Duan, Die; de Wit, Thierry; Goetz, Keith; Halekas, Jasper; Harvey, Peter; Kasper, J.; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; McManus, Michael; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.1103/PhysRevLett.125.025102

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Coronal-jet-producing Minifilament Eruptions as a Possible Source of Parker Solar Probe Switchbacks

The Parker Solar Probe (PSP) has observed copious rapid magnetic field direction changes in the near-Sun solar wind. These features have been called "switchbacks," and their origin is a mystery. But their widespread nature suggests that they may be generated by a frequently occurring process in the Sun\textquoterights atmosphere. We examine the possibility that the switchbacks originate from coronal jets. Recent work suggests that many coronal jets result when photospheric magnetic flux cancels, and forms a small-scale "m ...

Sterling, Alphonse; Moore, Ronald;

YEAR: 2020     DOI: 10.3847/2041-8213/ab96be

1503; 1504; 1534; 1981; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Tearing Instability and Periodic Density Perturbations in the Slow Solar Wind

In contrast with the fast solar wind, which originates in coronal holes, the source of the slow solar wind is still debated. Often intermittent and enriched with low first ionization potential elements\textemdashakin to what is observed in closed coronal loops\textemdashthe slow wind could form in bursty events nearby helmet streamers. Slow winds also exhibit density perturbations that have been shown to be periodic and could be associated with flux ropes ejected from the tip of helmet streamers, as shown recently by the ...

eville, Victor; Velli, Marco; Rouillard, Alexis; Lavraud, Benoit; Tenerani, Anna; Shi, Chen; Strugarek, Antoine;

YEAR: 2020     DOI: 10.3847/2041-8213/ab911d

Astrophysics - Solar and Stellar Astrophysics; Magnetohydrodynamics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Plasma astrophysics; Slow solar wind; Solar magnetic reconnection; Solar Probe Plus; Solar wind

The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe\textquoterights First Orbit

We present heliospheric current sheet (HCS) and plasma sheet (HPS) observations during Parker Solar Probe\textquoterights (PSP) first orbit around the Sun. We focus on the eight intervals that display a true sector boundary (TSB; based on suprathermal electron pitch angle distributions) with one or several associated current sheets. The analysis shows that (1) the main density enhancements in the vicinity of the TSB and HCS are typically associated with electron strahl dropouts, implying magnetic disconnection from the Su ...

Lavraud, B.; Fargette, N.; eville, V.; Szabo, A.; Huang, J.; Rouillard, A.; Viall, N.; Phan, T.; Kasper, J.; Bale, S.; Berthomier, M.; Bonnell, J.; Case, A.; de Wit, Dudok; Eastwood, J.; enot, V.; Goetz, K.; Griton, L.; Halekas, J.; Harvey, P.; Kieokaew, R.; Klein, K.; Korreck, K.; Kouloumvakos, A.; Larson, D.; Lavarra, M.; Livi, R.; Louarn, P.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Nieves-Chinchilla, T.; Pinto, R.; Poirier, N.; Pulupa, M.; Raouafi, N.; Stevens, M.; Toledo-Redondo, S.; Whittlesey, P.;

YEAR: 2020     DOI: 10.3847/2041-8213/ab8d2d

Parker Data Used; parker solar probe; Solar Probe Plus

Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves

Parker Solar Probe (PSP), NASA\textquoterights latest and closest mission to the Sun, is on a journey to investigate fundamental enigmas of the inner heliosphere. This paper reports initial observations made by the Solar Probe Analyzer for Ions (SPAN-I), one of the instruments in the Solar Wind Electrons Alphas and Protons instrument suite. We address the presence of secondary proton beams in concert with ion-scale waves observed by FIELDS, the electromagnetic fields instrument suite. We show two events from PSP\textquote ...

Verniero, J.; Larson, D.; Livi, R.; Rahmati, A.; McManus, M.; Pyakurel, Sharma; Klein, K.; Bowen, T.; Bonnell, J.; Alterman, B.; Whittlesey, P.; Malaspina, David; Bale, S.; Kasper, J.; Case, A.; Goetz, K.; Harvey, P.; Korreck, K.; MacDowall, R.; Pulupa, M.; Stevens, M.; de Wit, Dudok;

YEAR: 2020     DOI: 10.3847/1538-4365/ab86af

Alfv\ en waves; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Plasma physics; Solar Probe Plus; Solar wind; Space plasmas

Simulating White-Light Images of Coronal Structures for Parker Solar Probe/WISPR: Study of the Total Brightness Profiles

The Wide-field Imager for Parker Solar Probe (WISPR) captures unprecedented white-light images of the solar corona and inner heliosphere. Thanks to the uniqueness of the Parker Solar Probe\textquoterights (PSP) orbit, WISPR is able to image "locally" coronal structures at high spatial and time resolutions. The observed plane of sky, however, rapidly changes because of the PSP\textquoterights high orbital speed. Therefore, the interpretation of the dynamics of the coronal structures recorded by WISPR is not straightforward ...

o, Giuseppe; Bothmer, Volker; Vourlidas, Angelos; Liewer, Paulett; Thernisien, Arnaud; Stenborg, Guillermo; Howard, Russell;

YEAR: 2020     DOI: 10.1007/s11207-020-01626-y

Astrophysics - Solar and Stellar Astrophysics; Corona; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Simulating White-Light Images of Coronal Structures for Parker Solar Probe/WISPR: Study of the Total Brightness Profiles

The Wide-field Imager for Parker Solar Probe (WISPR) captures unprecedented white-light images of the solar corona and inner heliosphere. Thanks to the uniqueness of the Parker Solar Probe\textquoterights (PSP) orbit, WISPR is able to image "locally" coronal structures at high spatial and time resolutions. The observed plane of sky, however, rapidly changes because of the PSP\textquoterights high orbital speed. Therefore, the interpretation of the dynamics of the coronal structures recorded by WISPR is not straightforward ...

o, Giuseppe; Bothmer, Volker; Vourlidas, Angelos; Liewer, Paulett; Thernisien, Arnaud; Stenborg, Guillermo; Howard, Russell;

YEAR: 2020     DOI: 10.1007/s11207-020-01626-y

Astrophysics - Solar and Stellar Astrophysics; Corona; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Coronal Electron Temperature Inferred from the Strahl Electrons in the Inner Heliosphere: Parker Solar Probe and Helios Observations

The shape of the electron velocity distribution function plays an important role in the dynamics of the solar wind acceleration. Electrons are normally modeled with three components, the core, the halo, and the strahl. We investigate how well the fast strahl electrons in the inner heliosphere preserve the information about the coronal electron temperature at their origin. We analyzed the data obtained by two missions, Helios, spanning the distances between 65 and 215 RS, and Parker Solar Probe (PSP), reaching d ...

c, Laura; Larson, Davin; Whittlesey, Phyllis; Maksimovic, Milan; Badman, Samuel; Landi, Simone; Matteini, Lorenzo; Bale, Stuart.; Bonnell, John; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Stevens, Michael;

YEAR: 2020     DOI: 10.3847/1538-4357/ab7b7a

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Localized Magnetic-field Structures and Their Boundaries in the Near-Sun Solar Wind from Parker Solar Probe Measurements

One of the discoveries of the Parker Solar Probe during its first encounters with the Sun is ubiquitous presence of relatively small-scale structures standing out as sudden deflections of the magnetic field. They were named "switchbacks" since some of them show a full reversal of the radial component of the magnetic field and then return to "regular" conditions. We carried out an analysis of three typical switchback structures having different characteristics: I. Alfv\ enic structure, where the variations of the magnetic ...

Krasnoselskikh, V.; Larosa, A.; Agapitov, O.; de Wit, Dudok; Moncuquet, M.; Mozer, F.; Stevens, M.; Bale, S.; Bonnell, J.; Froment, C.; Goetz, K.; Goodrich, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Raouafi, N.; Revillet, C.; Velli, M.; Wygant, J.;

YEAR: 2020     DOI: 10.3847/1538-4357/ab7f2d

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Sunward-propagating Whistler Waves Collocated with Localized Magnetic Field Holes in the Solar Wind: Parker Solar Probe Observations at 35.7 R Radii

Observations by the Parker Solar Probe mission of the solar wind at \~35.7 solar radii reveal the existence of whistler wave packets with frequencies below 0.1 fce (20-80 Hz in the spacecraft frame). These waves often coincide with local minima of the magnetic field magnitude or with sudden deflections of the magnetic field that are called switchbacks. Their sunward propagation leads to a significant Doppler frequency downshift from 200-300 to 20-80 Hz (from 0.2 to 0.5 fce). The polarization of these ...

Agapitov, O.; de Wit, Dudok; Mozer, F.; Bonnell, J.; Drake, J.; Malaspina, D.; Krasnoselskikh, V.; Bale, S.; Whittlesey, P.; Case, A.; Chaston, C.; Froment, C.; Goetz, K.; Goodrich, K.; Harvey, P.; Kasper, J.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Pulupa, M.; Revillet, C.; Stevens, M.; Wygant, J.;

YEAR: 2020     DOI: 10.3847/2041-8213/ab799c

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Improving Predictions of High-Latitude Coronal Mass Ejections Throughout the Heliosphere

Predictions of the impact of coronal mass ejections (CMEs) in the heliosphere mostly rely on cone CME models, whose performances are optimized for locations in the ecliptic plane and at 1 AU (e.g., at Earth). Progresses in the exploration of the inner heliosphere, however, advocate the need to assess their performances at both higher latitudes and smaller heliocentric distances. In this work, we perform 3-D magnetohydrodynamics simulations of artificial cone CMEs using the EUropean Heliospheric FORecasting Information Ass ...

Scolini, C.; e, Chan\; Pomoell, J.; Rodriguez, L.; Poedts, S.;

YEAR: 2020     DOI: 10.1029/2019SW002246

coronal mass ejections; forecasting; Heliosphere; modeling; parker solar probe; Solar Probe Plus

Sharp Alfv\ enic Impulses in the Near-Sun Solar Wind

Measurements of the near-Sun solar wind by the Parker Solar Probe have revealed the presence of large numbers of discrete Alfv\ enic impulses with an anti-sunward sense of propagation. These are similar to those previously observed near 1 au, in high speed streams over the Sun\textquoterights poles and at 60 solar radii. At 35 solar radii, however, they are typically shorter and sharper than seen elsewhere. In addition, these spikes occur in "patches" and there are also clear periods within the same stream when they do no ...

Horbury, Timothy; Woolley, Thomas; Laker, Ronan; Matteini, Lorenzo; Eastwood, Jonathan; Bale, Stuart; Velli, Marco; Chandran, Benjamin; Phan, Tai; Raouafi, Nour; Goetz, Keith; Harvey, Peter; Pulupa, Marc; Klein, K.; de Wit, Thierry; Kasper, Justin; Korreck, Kelly; Case, A.; Stevens, Michael; Whittlesey, Phyllis; Larson, Davin; MacDowall, Robert; Malaspina, David; Livi, Roberto;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5b15

Parker Data Used; parker solar probe; Solar Probe Plus

Sharp Alfv\ enic Impulses in the Near-Sun Solar Wind

Measurements of the near-Sun solar wind by the Parker Solar Probe have revealed the presence of large numbers of discrete Alfv\ enic impulses with an anti-sunward sense of propagation. These are similar to those previously observed near 1 au, in high speed streams over the Sun\textquoterights poles and at 60 solar radii. At 35 solar radii, however, they are typically shorter and sharper than seen elsewhere. In addition, these spikes occur in "patches" and there are also clear periods within the same stream when they do no ...

Horbury, Timothy; Woolley, Thomas; Laker, Ronan; Matteini, Lorenzo; Eastwood, Jonathan; Bale, Stuart; Velli, Marco; Chandran, Benjamin; Phan, Tai; Raouafi, Nour; Goetz, Keith; Harvey, Peter; Pulupa, Marc; Klein, K.; de Wit, Thierry; Kasper, Justin; Korreck, Kelly; Case, A.; Stevens, Michael; Whittlesey, Phyllis; Larson, Davin; MacDowall, Robert; Malaspina, David; Livi, Roberto;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5b15

Parker Data Used; parker solar probe; Solar Probe Plus

Small, Low-energy, Dispersive Solar Energetic Particle Events Observed by Parker Solar Probe

The Energetic Particle Instrument-Low Energy (EPI-Lo) experiment has detected several weak, low-energy (̃30-300 keV nucleon-1) solar energetic particle (SEP) events during its first two closest approaches to the Sun, providing a unique opportunity to explore the sources of low-energy particle acceleration. As part of the Parker Solar Probe (PSP) Integrated Science Investigation of the Sun (IS☉IS) suite, EPI-Lo was designed to investigate the physics of energetic particles; however, in the special lowest-ener ...

Hill, M.; Mitchell, D.; Allen, R.; de Nolfo, G.; Vourlidas, A.; Brown, L.; Jones, S.; McComas, D.; McNutt, R.; Mitchell, J.; Szalay, J.; Wallace, S.; Arge, C.; Christian, E.; Cohen, C.; Crew, A.; Desai, M.; Giacalone, J.; Henney, C.; Joyce, C.; Krimigis, S.; Leske, R.; Mewaldt, R.; Nelson, K.; Roelof, E.; Schwadron, N.; Wiedenbeck, M.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab643d

Parker Data Used; parker solar probe; Solar Probe Plus

Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at \~0.25 au

We present an analysis of Parker Solar Probe (PSP) IS☉IS observations of ̃30-300 keV n-1 ions on 2018 November 11 when PSP was about 0.25 au from the Sun. Five hours before the onset of a solar energetic particle (SEP) event, a coronal mass ejection (CME) was observed by STEREO-A/COR2, which crossed PSP about a day later. No shock was observed locally at PSP, but the CME may have driven a weak shock earlier. The SEP event was dispersive, with higher energy ions arriving before the lower energy ones. Timing s ...

Giacalone, J.; Mitchell, D.; Allen, R.; Hill, M.; McNutt, R.; Szalay, J.; Desai, M.; Rouillard, A.; Kouloumvakos, A.; McComas, D.; Christian, E.; Schwadron, N.; Wiedenbeck, M.; Bale, S.; Brown, L.; Case, A.; Chen, X.; Cohen, C.; Joyce, C.; Kasper, J.; Klein, K.; Korreck, K.; Larson, D.; Livi, R.; Leske, R.; MacDowall, R.; Matthaeus, W.; Mewaldt, R.; Nieves-Chinchilla, T.; Pulupa, M.; Roelof, E.; Stevens, M.; Szabo, A.; Whittlesey, P.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5221

Parker Data Used; parker solar probe; Solar Probe Plus

The Solar Probe ANalyzers\textemdashElectrons on the Parker Solar Probe

Electrostatic analyzers of different designs have been used since the earliest days of the space age, beginning with the very earliest solar-wind measurements made by Mariner 2 en route to Venus in 1962. The Parker Solar Probe (PSP) mission, NASA\textquoterights first dedicated mission to study the innermost reaches of the heliosphere, makes its thermal plasma measurements using a suite of instruments called the Solar Wind Electrons, Alphas, and Protons (SWEAP) investigation. SWEAP\textquoterights electron PSP Analyzer (S ...

Whittlesey, Phyllis; Larson, Davin; Kasper, Justin; Halekas, Jasper; Abatcha, Mamuda; Abiad, Robert; Berthomier, M.; Case, A.; Chen, Jianxin; Curtis, David; Dalton, Gregory; Klein, Kristopher; Korreck, Kelly; Livi, Roberto; Ludlam, Michael; Marckwordt, Mario; Rahmati, Ali; Robinson, Miles; Slagle, Amanda; Stevens, M.; Tiu, Chris; Verniero, J.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab7370

Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar coronal heating; Solar instruments; Solar Probe Plus; Solar wind; Space plasmas

The Solar Probe Cup on the Parker Solar Probe

Solar Probe Cup (SPC) is a Faraday cup instrument on board NASA\textquoterights Parker Solar Probe (PSP) spacecraft designed to make rapid measurements of thermal coronal and solar wind plasma. The spacecraft is in a heliocentric orbit that takes it closer to the Sun than any previous spacecraft, allowing measurements to be made where the coronal and solar wind plasma is being heated and accelerated. The SPC instrument was designed to be pointed directly at the Sun at all times, allowing the solar wind (which is flowing p ...

Case, A.; Kasper, Justin; Stevens, Michael; Korreck, Kelly; Paulson, Kristoff; Daigneau, Peter; Caldwell, Dave; Freeman, Mark; Henry, Thayne; Klingensmith, Brianna; Bookbinder, J.; Robinson, Miles; Berg, Peter; Tiu, Chris; Wright, K.; Reinhart, Matthew; Curtis, David; Ludlam, Michael; Larson, Davin; Whittlesey, Phyllis; Livi, Roberto; Klein, Kristopher; c, Mihailo;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5a7b

Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

The Solar Probe Cup on the Parker Solar Probe

Solar Probe Cup (SPC) is a Faraday cup instrument on board NASA\textquoterights Parker Solar Probe (PSP) spacecraft designed to make rapid measurements of thermal coronal and solar wind plasma. The spacecraft is in a heliocentric orbit that takes it closer to the Sun than any previous spacecraft, allowing measurements to be made where the coronal and solar wind plasma is being heated and accelerated. The SPC instrument was designed to be pointed directly at the Sun at all times, allowing the solar wind (which is flowing p ...

Case, A.; Kasper, Justin; Stevens, Michael; Korreck, Kelly; Paulson, Kristoff; Daigneau, Peter; Caldwell, Dave; Freeman, Mark; Henry, Thayne; Klingensmith, Brianna; Bookbinder, J.; Robinson, Miles; Berg, Peter; Tiu, Chris; Wright, K.; Reinhart, Matthew; Curtis, David; Ludlam, Michael; Larson, Davin; Whittlesey, Phyllis; Livi, Roberto; Klein, Kristopher; c, Mihailo;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5a7b

Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au

Several fast solar wind streams and stream interaction regions (SIRs) were observed by the Parker Solar Probe (PSP) during its first orbit (2018 September-2019 January). During this time, several recurring SIRs were also seen at 1 au at both L1 (Advanced Composition Explorer (ACE) and Wind) and the location of the Solar Terrestrial Relations Observatory-Ahead (STEREO-A). In this paper, we compare four fast streams observed by PSP at different radial distances during its first orbit. For three of these fast stream events, ...

Allen, R.; Lario, D.; Odstrcil, D.; Ho, G.; Jian, L.; Cohen, C.; Badman, S.; Jones, S.; Arge, C.; Mays, M.; Mason, G.; Bale, S.; Bonnell, J.; Case, A.; Christian, E.; de Wit, Dudok; Goetz, K.; Harvey, P.; Henney, C.; Hill, M.; Kasper, J.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; McComas, D.; McNutt, R.; Mitchell, D.; Pulupa, M.; Raouafi, N.; Schwadron, N.; Stevens, M.; Whittlesey, P.; Wiedenbeck, M.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab578f

Parker Data Used; parker solar probe; Solar Probe Plus

Source and Propagation of a Streamer Blowout Coronal Mass Ejection Observed by the Parker Solar Probe

In the first orbit of the Parker Solar Probe (PSP), in situ thermal plasma and magnetic field measurements were collected as close as 35 RSun from the Sun, an environment that had not been previously explored. During the first orbit of PSP, the spacecraft flew through a streamer blowout coronal mass ejection (SBO-CME) on 2018 November 11 at 23:50 UT as it exited the science encounter. The SBO-CME on November 11 was directed away from the Earth and was not visible by L1 or Earth-based telescopes due to this geom ...

Korreck, Kelly; Szabo, Adam; Chinchilla, Teresa; Lavraud, Benoit; Luhmann, Janet; Niembro, Tatiana; Higginson, Aleida; Alzate, Nathalia; Wallace, Samantha; Paulson, Kristoff; Rouillard, Alexis; Kouloumvakos, Athanasios; Poirier, Nicolas; Kasper, Justin; Case, A.; Stevens, Michael; Bale, Stuart; Pulupa, Marc; Whittlesey, Phyllis; Livi, Roberto; Goetz, Keith; Larson, Davin; Malaspina, David; Morgan, Huw; Narock, Ayris; Schwadron, Nathan; Bonnell, John; Harvey, Peter; Wygant, John;

YEAR: 2020     DOI: 10.3847/1538-4365/ab6ff9

Parker Data Used; parker solar probe; Solar Probe Plus

Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere

We present initial results from the Radio Frequency Spectrometer, the high-frequency component of the FIELDS experiment on the Parker Solar Probe (PSP). During the first PSP solar encounter (2018 November), only a few small radio bursts were observed. During the second encounter (2019 April), copious type III radio bursts occurred, including intervals of radio storms where bursts occurred continuously. In this paper, we present initial observations of the characteristics of type III radio bursts in the inner heliosphere, ...

Pulupa, Marc; Bale, Stuart; Badman, Samuel; Bonnell, J.; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Hegedus, Alexander; Kasper, Justin; Korreck, Kelly; Krasnoselskikh, Vladimir; Larson, Davin; Lecacheux, Alain; Livi, Roberto; MacDowall, Robert; Maksimovic, Milan; Malaspina, David; Oliveros, Juan; Meyer-Vernet, Nicole; Moncuquet, Michel; Stevens, Michael; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5dc0

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere

We present initial results from the Radio Frequency Spectrometer, the high-frequency component of the FIELDS experiment on the Parker Solar Probe (PSP). During the first PSP solar encounter (2018 November), only a few small radio bursts were observed. During the second encounter (2019 April), copious type III radio bursts occurred, including intervals of radio storms where bursts occurred continuously. In this paper, we present initial observations of the characteristics of type III radio bursts in the inner heliosphere, ...

Pulupa, Marc; Bale, Stuart; Badman, Samuel; Bonnell, J.; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Hegedus, Alexander; Kasper, Justin; Korreck, Kelly; Krasnoselskikh, Vladimir; Larson, Davin; Lecacheux, Alain; Livi, Roberto; MacDowall, Robert; Maksimovic, Milan; Malaspina, David; Oliveros, Juan; Meyer-Vernet, Nicole; Moncuquet, Michel; Stevens, Michael; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5dc0

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere

We present initial results from the Radio Frequency Spectrometer, the high-frequency component of the FIELDS experiment on the Parker Solar Probe (PSP). During the first PSP solar encounter (2018 November), only a few small radio bursts were observed. During the second encounter (2019 April), copious type III radio bursts occurred, including intervals of radio storms where bursts occurred continuously. In this paper, we present initial observations of the characteristics of type III radio bursts in the inner heliosphere, ...

Pulupa, Marc; Bale, Stuart; Badman, Samuel; Bonnell, J.; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Hegedus, Alexander; Kasper, Justin; Korreck, Kelly; Krasnoselskikh, Vladimir; Larson, Davin; Lecacheux, Alain; Livi, Roberto; MacDowall, Robert; Maksimovic, Milan; Malaspina, David; Oliveros, Juan; Meyer-Vernet, Nicole; Moncuquet, Michel; Stevens, Michael; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5dc0

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Space Physics; Solar Probe Plus

Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere

We present initial results from the Radio Frequency Spectrometer, the high-frequency component of the FIELDS experiment on the Parker Solar Probe (PSP). During the first PSP solar encounter (2018 November), only a few small radio bursts were observed. During the second encounter (2019 April), copious type III radio bursts occurred, including intervals of radio storms where bursts occurred continuously. In this paper, we present initial observations of the characteristics of type III radio bursts in the inner heliosphere, ...

Pulupa, Marc; Bale, Stuart; Badman, Samuel; Bonnell, J.; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Hegedus, Alexander; Kasper, Justin; Korreck, Kelly; Krasnoselskikh, Vladimir; Larson, Davin; Lecacheux, Alain; Livi, Roberto; MacDowall, Robert; Maksimovic, Milan; Malaspina, David; Oliveros, Juan; Meyer-Vernet, Nicole; Moncuquet, Michel; Stevens, Michael; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5dc0

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Space Physics; Solar Probe Plus

Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade

One of the most striking observations made by Parker Solar Probe during its first solar encounter is the omnipresence of rapid polarity reversals in a magnetic field that is otherwise mostly radial. These so-called switchbacks strongly affect the dynamics of the magnetic field. We concentrate here on their macroscopic properties. First, we find that these structures are self-similar, and have neither a characteristic magnitude, nor a characteristic duration. Their waiting time statistics show evidence of aggregation. The ...

de Wit, Thierry; Krasnoselskikh, Vladimir; Bale, Stuart; Bonnell, John; Bowen, Trevor; Chen, Christopher; Froment, Clara; Goetz, Keith; Harvey, Peter; Jagarlamudi, Vamsee; Larosa, Andrea; MacDowall, Robert; Malaspina, David; Matthaeus, William; Pulupa, Marc; Velli, Marco; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5853

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Switchbacks in the Solar Magnetic Field: Their Evolution, Their Content, and Their Effects on the Plasma

Switchbacks (rotations of the magnetic field) are observed on the Parker Solar Probe. Their evolution, content, and plasma effects are studied in this paper. The solar wind does not receive a net acceleration from switchbacks that it encountered upstream of the observation point. The typical switchback rotation angle increased with radial distance. Significant Poynting fluxes existed inside, but not outside, switchbacks, and the dependence of the Poynting flux amplitude on the switchback radial location and rotation angle ...

Mozer, F.; Agapitov, O.; Bale, S.; Bonnell, J.; Case, T.; Chaston, C.; Curtis, D.; de Wit, Dudok; Goetz, K.; Goodrich, K.; Harvey, P.; Kasper, J.; Korreck, K.; Krasnoselskikh, V.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.; Whittlesey, P.; Wygant, J.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab7196

Parker Data Used; parker solar probe; Solar Probe Plus

Turbulence Transport Modeling and First Orbit Parker Solar Probe ( PSP ) Observations

The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding cor ...

Adhikari, L.; Zank, G.; Zhao, L.-L.; Kasper, J.; Korreck, K.; Stevens, M.; Case, A.; Whittlesey, P.; Larson, D.; Livi, R.; Klein, K.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5852

Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

WISPR Imaging of a Pristine CME

The Wide-field Imager for Solar Probe (WISPR) on board the Parker Solar Probe (PSP) observed a coronal mass ejection (CME) on 2018 November 1, the first day of the initial PSP encounter. The speed of the CME, approximately 200-300 km s-1 in the WISPR field of view, is typical of slow, streamer blowout CMEs. This event was also observed by the Large Angle and Spectrometric Coronagraph Experiment (LASCO) coronagraphs. WISPR and LASCO view remarkably similar structures that enable useful cross-comparison between t ...

Hess, Phillip; Rouillard, Alexis; Kouloumvakos, Athanasios; Liewer, Paulett; Zhang, Jie; Dhakal, Suman; Stenborg, Guillermo; Colaninno, Robin; Howard, Russell;

YEAR: 2020     DOI: 10.3847/1538-4365/ab4ff0

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter

In this paper, we present an analysis of the internal structure of a coronal mass ejection (CME) detected by in situ instruments on board the Parker Solar Probe (PSP) spacecraft during its first solar encounter. On 2018 November 11 at 23:53 UT, the FIELDS magnetometer measured an increase in strength of the magnetic field as well as a coherent change in the field direction. The SWEAP instrument simultaneously detected a low proton temperature and signatures of bidirectionality in the electron pitch angle distribution (PAD ...

Nieves-Chinchilla, Teresa; Szabo, Adam; Korreck, Kelly; Alzate, Nathalia; Balmaceda, Laura; Lavraud, Benoit; Paulson, Kristoff; Narock, Ayris; Wallace, Samantha; Jian, Lan; Luhmann, Janet; Morgan, Huw; Higginson, Aleida; Arge, Charles; Bale, Stuart; Case, Anthony; de Wit, Thierry; Giacalone, Joe; Goetz, Keith; Harvey, Peter; Jones-Melosky, Shaela; Kasper, J.; Larson, Davin; Livi, Roberto; McComas, David; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Raouafi, Nour; Schwadron, Nathan; Stevens, Michael; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.3847/1538-4365/ab61f5

Parker Data Used; parker solar probe; Solar Probe Plus

Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the Parker Solar Probe and Comparison with Helios

We discuss the solar wind electron temperatures Te as measured in the nascent solar wind by Parker Solar Probe during its first perihelion pass. The measurements have been obtained by fitting the high-frequency part of quasi-thermal noise spectra recorded by the Radio Frequency Spectrometer. In addition we compare these measurements with those obtained by the electrostatic analyzer discussed in Halekas et al. These first electron observations show an anticorrelation between Te and the wind bulk speed ...

Maksimovic, M.; Bale, S.; c, Ber\v; Bonnell, J.; Case, A.; de Wit, Dudok; Goetz, K.; Halekas, J.; Harvey, P.; Issautier, K.; Kasper, J.; Korreck, K.; Jagarlamudi, Krishna; Lahmiti, N.; Larson, D.; Lecacheux, A.; Livi, R.; MacDowall, R.; Malaspina, D.; c, M.; Meyer-Vernet, N.; Moncuquet, M.; Pulupa, M.; Salem, C.; Stevens, M.; ak, \v; Velli, M.; Whittlesey, P.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab61fc

Parker Data Used; parker solar probe; Solar Probe Plus



  1      2      3