Found 9 entries in the Bibliography.
Showing entries from 1 through 9
2020 |
The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was ... Lario, D.; Balmaceda, L.; Alzate, N.; Mays, M.; Richardson, I.; Allen, R.; Florido-Llinas, M.; Nieves-Chinchilla, T.; Koval, A.; Lugaz, N.; Jian, L.; Arge, C.; Macneice, P.; Odstrcil, D.; Morgan, H.; Szabo, A.; Desai, M.; Whittlesey, P.; Stevens, M.; Ho, G.; Luhmann, J.; YEAR: 2020   DOI: 10.3847/1538-4357/ab9942 |
The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was ... Lario, D.; Balmaceda, L.; Alzate, N.; Mays, M.; Richardson, I.; Allen, R.; Florido-Llinas, M.; Nieves-Chinchilla, T.; Koval, A.; Lugaz, N.; Jian, L.; Arge, C.; Macneice, P.; Odstrcil, D.; Morgan, H.; Szabo, A.; Desai, M.; Whittlesey, P.; Stevens, M.; Ho, G.; Luhmann, J.; YEAR: 2020   DOI: 10.3847/1538-4357/ab9942 |
We present model calculations of the transport processes of solar energetic particles in the corona and interplanetary medium for two events detected by Parker Solar Probe near its second perihelion on 2019 April 2 and April 4. In the 2019 April 2 event, the \<100 keV proton differential intensity measured by the Integrated Science Investigation of the Sun Low-Energy Energetic Particle instrument increased by more than a factor of 10 above the pre-event intensity, whereas the \~1 MeV proton differential intensity detec ... Zhao, Lulu; Zhang, Ming; Lario, David; YEAR: 2020   DOI: 10.3847/1538-4357/ab97b3 Parker Data Used; parker solar probe; Solar energetic particles; Solar Probe Plus |
Several fast solar wind streams and stream interaction regions (SIRs) were observed by the Parker Solar Probe (PSP) during its first orbit (2018 September-2019 January). During this time, several recurring SIRs were also seen at 1 au at both L1 (Advanced Composition Explorer (ACE) and Wind) and the location of the Solar Terrestrial Relations Observatory-Ahead (STEREO-A). In this paper, we compare four fast streams observed by PSP at different radial distances during its first orbit. For three of these fast stream events, ... Allen, R.; Lario, D.; Odstrcil, D.; Ho, G.; Jian, L.; Cohen, C.; Badman, S.; Jones, S.; Arge, C.; Mays, M.; Mason, G.; Bale, S.; Bonnell, J.; Case, A.; Christian, E.; de Wit, Dudok; Goetz, K.; Harvey, P.; Henney, C.; Hill, M.; Kasper, J.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; McComas, D.; McNutt, R.; Mitchell, D.; Pulupa, M.; Raouafi, N.; Schwadron, N.; Stevens, M.; Whittlesey, P.; Wiedenbeck, M.; YEAR: 2020   DOI: 10.3847/1538-4365/ab578f |
Energetic Particle Increases Associated with Stream Interaction Regions The Parker Solar Probe was launched on 2018 August 12 and completed its second orbit on 2019 June 19 with perihelion of 35.7 solar radii. During this time, the Energetic Particle Instrument-Hi (EPI-Hi, one of the two energetic particle instruments comprising the Integrated Science Investigation of the Sun, IS☉IS) measured seven proton intensity increases associated with stream interaction regions (SIRs), two of which appear to be occurring in the same region corotating with the Sun. The events are relatively weak, with ... Cohen, C.; Christian, E.; Cummings, A.; Davis, A.; Desai, M.; Giacalone, J.; Hill, M.; Joyce, C.; Labrador, A.; Leske, R.; Matthaeus, W.; McComas, D.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Rankin, J.; Roelof, E.; Schwadron, N.; Stone, E.; Szalay, J.; Wiedenbeck, M.; Allen, R.; Ho, G.; Jian, L.; Lario, D.; Odstrcil, D.; Bale, S.; Badman, S.; Pulupa, M.; MacDowall, R.; Kasper, J.; Case, A.; Korreck, K.; Larson, D.; Livi, Roberto; Stevens, M.; Whittlesey, Phyllis; YEAR: 2020   DOI: 10.3847/1538-4365/ab4c38 Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
2019 |
Full inversion of solar relativistic electron events measured by the Helios spacecraft Context. The Parker Solar Probe and the incoming Solar Orbiter mission will provide measurements of solar energetic particle (SEP) events at close heliocentric distances from the Sun. Up to present, the largest data set of SEP events in the inner heliosphere are the observations by the two Helios spacecraft. Aims. We re-visit a sample of 15 solar relativistic electron events measured by the Helios mission with the goal of better characterising the injection histories of solar energetic particles a ... Pacheco, D.; Agueda, N.; Aran, A.; Heber, B.; Lario, D.; YEAR: 2019   DOI: 10.1051/0004-6361/201834520 flares; Interplanetary medium; Heliosphere; particle emission |
2016 |
The Solar Probe Plus Mission: Humanity\textquoterights First Visit to Our Star Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPP\textquoterights main science goal is to determine the structure and dynamics of the Sun\textquoterights coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of su ... Fox, N.; Velli, M.; Bale, S.; Decker, R.; Driesman, A.; Howard, R.; Kasper, J.; Kinnison, J.; Kusterer, M.; Lario, D.; Lockwood, M.; McComas, D.; Raouafi, N.; Szabo, A.; YEAR: 2016   DOI: 10.1007/s11214-015-0211-6 Corona; Heliophysics; NASA mission; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; SPP |
2012 |
A method to estimate the total fluence of solar flare neutrons at a spacecraft traveling in the innermost part of the heliosphere (at heliocentric radial distances of \<1 AU) is presented. The results of the neutron production and emissivity codes of Hua and Lingenfelter (1987a, 1987b) scaled to one of the largest solar neutron events ever observed at the Earth are used to derive a conservative estimate of the energy spectrum of neutrons emitted from the Sun after a large solar flare. By taking into account the surviva ... YEAR: 2012   DOI: 10.1029/2011SW000732 and Astronomy: Flares; and Astronomy: General or miscellaneous; and Astronomy: X-rays; and neutrinos; Astrophysics; gamma rays; parker solar probe; Solar Physics; Solar Probe Plus |
2011 |
A method to estimate both solar energetic particle mission-integrated fluences and solar energetic particle peak intensities for missions traveling through the innermost part of the heliosphere (r \< 1 AU) is presented. By using (1) an extensive data set of particle intensities measured at 1 AU over the last three solar cycles, (2) successive launch dates for the mission traveling close to the Sun over the time interval spanned by our data set, and (3) appropriate radial dependences to extrapolate fluences and peak int ... YEAR: 2011   DOI: 10.1029/2011SW000708 Interplanetary Physics: Energetic particles (7514); Interplanetary Physics: Instruments and techniques; Interplanetary Physics: Solar cycle variations (7536); Parker Data Used; parker solar probe; Solar Probe Plus; space weather |
1