PSP Bibliography


  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 5 entries in the Bibliography.

Showing entries from 1 through 5


Tracking of magnetic helicity evolution in the inner heliosphere. A radial alignment study

Context. Magnetic helicity is one of the invariants in ideal magnetohydrodynamics, and its spectral evolution has a substantial amount of information to reveal the mechanism that are behind turbulence in space and astrophysical plasmas. \ Aims: The goal of our study is to observationally characterize the magnetic helicity evolution in the inner heliosphere by resolving the helicity transport in a scale-wise fashion in the spectral domain. \ Methods: The evolution of the magnetic helicity spectrum in the inner heliosphere was ...

Alberti, T.; Narita, Y.; Hadid, L.~Z.; Heyner, D.; Milillo, A.; Plainaki, C.; Auster, H.; Richter, I.;

Published by: \aap      Published on: aug

YEAR: 2022     DOI: 10.1051/0004-6361/202244314

Parker Data Used; Solar wind; Sun: fundamental parameters; Sun: heliosphere


The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29

Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (\ensuremath\lesssim1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near- Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and a ...

Kollhoff, A.; Kouloumvakos, A.; Lario, D.; Dresing, N.; omez-Herrero, R.; ia, Rodr\; Malandraki, O.~E.; Richardson, I.~G.; Posner, A.; Klein, K.; Pacheco, D.; Klassen, A.; Heber, B.; Cohen, C.~M.~S.; Laitinen, T.; Cernuda, I.; Dalla, S.; Lara, Espinosa; Vainio, R.; Köberle, M.; Kühl, R.; Xu, Z.~G.; Berger, L.; Eldrum, S.; Brüdern, M.; Laurenza, M.; Kilpua, E.~J.; Aran, A.; Rouillard, A.~P.; ik, Bu\vc\; Wijsen, N.; Pomoell, J.; Wimmer-Schweingruber, R.~F.; Martin, C.; Böttcher, S.~I.; von Forstner, J.~L.; Terasa, J.; Boden, S.; Kulkarni, S.~R.; Ravanbakhsh, A.; Yedla, M.; Janitzek, N.; iguez-Pacheco, Rodr\; Mateo, Prieto; Prieto, S.; Espada, Parra; Polo, Rodr\; in, Mart\; Carcaboso, F.; Mason, G.~M.; Ho, G.~C.; Allen, R.~C.; Andrews, Bruce; Schlemm, C.~E.; Seifert, H.; Tyagi, K.; Lees, W.~J.; Hayes, J.; Bale, S.~D.; Krupar, V.; Horbury, T.~S.; Angelini, V.; Evans, V.; Brien, H.; Maksimovic, M.; Khotyaintsev, Yu.; Vecchio, A.; Steinvall, K.; Asvestari, E.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140937

Parker Data Used; Sun: particle emission; Sun: heliosphere; Sun: coronal mass ejections (CMEs); Sun: flares; Interplanetary medium


Nanodust in the Heliosphere

The NASA Parker Solar Probe and the ESA Solar Orbiter will explore the source region of the solar wind within 20 solar radii. Their unprecedented in-situ measurements are also expected to shed light on the nature of the F-corona and the existence of a halo of nanodust. Such a dust complex might play an important role in the generation of high-speed nanodust grains and the inner-source pickup ions. A brief summary of previous works on this topic is given here to be followed by a sketch on a plan to integrate MHD simulation of ...

Ip, Wing-Huen; Lai, Ian-Lin; Shen, Fang;

Published by:       Published on:

YEAR: 2019     DOI: 10.1088/1742-6596/1332/1/012007

Parker Data Used


The solar probe plus radio frequency spectrometer: Measurement requirements, analog design, and digital signal processing

The Radio Frequency Spectrometer (RFS) is a two-channel digital receiver and spectrometer, which will make remote sensing observations of radio waves and in situ measurements of electrostatic and electromagnetic fluctuations in the solar wind. A part of the FIELDS suite for Solar Probe Plus (SPP), the RFS is optimized for measurements in the inner heliosphere, where solar radio bursts are more intense and the plasma frequency is higher compared to previous measurements at distances of 1 AU or greater. The inputs to the RF ...

Pulupa, M.; Bale, S.; Bonnell, J.; Bowen, T.; Carruth, N.; Goetz, K.; Gordon, D.; Harvey, P.; Maksimovic, M.; inez-Oliveros, J.; Moncuquet, M.; Saint-Hilaire, P.; Seitz, D.; Sundkvist, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023345

electric field; FIELDS; magnetic field; Parker Data Used; parker solar probe; quasi-thermal noise; radio; Solar Probe Plus


A semi-analytical foreshock model for energetic storm particle events inside 1 AU

We have constructed a semi-analytical model of the energetic-ion foreshock of a CME-driven coronal/interplanetary shock wave responsible for the acceleration of large solar energetic particle (SEP) events. The model is based on the analytical model of diffusive shock acceleration of Bell (1978), appended with a temporal dependence of the cut-off momentum of the energetic particles accelerated at the shock, derived from the theory. Parameters of the model are re-calibrated using a fully time-dependent self-consistent simul ...

Vainio, Rami; önni, Arttu; Battarbee, Markus; Koskinen, Hannu; Afanasiev, Alexandr; Laitinen, Timo;

Published by: Journal of Space Weather and Space Climate      Published on: 02/2014

YEAR: 2014     DOI: 10.1051/swsc/2014005

Energetic particle; Heliosphere; Interplanetary medium; parker solar probe; SEP; Shocks; Solar Probe Plus