Notice:
|
Found 8 entries in the Bibliography.
Showing entries from 1 through 8
2023 |
In this study we examine the radial dependence of the inertial and dissipation range indices, as well as the spectral break separating the inertial and dissipation range in power density spectra of interplanetary magnetic field fluctuations using Parker Solar Probe data from the fifth solar encounter between \raisebox-0.5ex\textasciitilde0.1 and \raisebox-0.5ex\textasciitilde0.7 au. The derived break wavenumber compares reasonably well with previous estimates at larger radial distances and is consistent with gyro-resonant da ... Lotz, S.; Nel, A.~E.; Wicks, R.~T.; Roberts, O.~W.; Engelbrecht, N.~E.; Strauss, R.~D.; Botha, G.~J.~J.; Kontar, E.~P.; Pit\vna, A.; Bale, S.~D.; Published by: \apj Published on: jan YEAR: 2023   DOI: 10.3847/1538-4357/aca903 Parker Data Used; Space plasmas; Solar wind; interplanetary turbulence; 1544; 1534; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
PREFACE: Recent progress in the physics of the Sun and heliosphere With the recent launch of the Parker Solar Probe and Solar Orbiter missions, the solar physics community has entered a new era of solar physics research. The observations within the inner heliosphere from a few previously inaccessible locations are not only complementing the observations from the Earth, but bring in new, sometimes puzzling, unexpected results. The wealth of the new generation of space and ground-based observational facilities coupled with the state-of-the-art modelling continuously advances and improves our ... Kontar, Eduard; Ballai, Istvan; Published by: Advances in Space Research Published on: feb YEAR: 2023   DOI: 10.1016/j.asr.2022.12.032 |
2021 |
\ Aims: We use multi-spacecraft observations of individual type III radio bursts to calculate the directivity of the radio emission. We compare these data to the results of ray-tracing simulations of the radio-wave propagation and probe the plasma properties of the inner heliosphere. \ Methods: We used ray-tracing simulations of radio-wave propagation with anisotropic scattering on density inhomogeneities to study the directivity of radio emissions. Simultaneous observations of type III radio bursts by four widely separated ... Musset, S.; Maksimovic, M.; Kontar, E.; Krupar, V.; Chrysaphi, N.; Bonnin, X.; Vecchio, A.; Cecconi, B.; Zaslavsky, A.; Issautier, K.; Bale, S.~D.; Pulupa, M.; Published by: \aap Published on: dec YEAR: 2021   DOI: 10.1051/0004-6361/202140998 Parker Data Used; Sun: radio radiation; scattering; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Electron Acceleration during Macroscale Magnetic Reconnection The first self-consistent simulations of electron acceleration during magnetic reconnection in a macroscale system are presented. Consistent with solar flare observations, the spectra of energetic electrons take the form of power laws that extend more than two decades in energy. The drive mechanism for these nonthermal electrons is Fermi reflection in growing and merging magnetic flux ropes. A strong guide field suppresses the production of nonthermal electrons by weakening the Fermi drive mechanism. For a weak guide field t ... Arnold, H.; Drake, J.; Swisdak, M.; Guo, F.; Dahlin, J.; Chen, B.; Fleishman, G.; Glesener, L.; Kontar, E.; Phan, T.; Shen, C.; Published by: Physical Review Letters Published on: 04/2021 YEAR: 2021   DOI: 10.1103/PhysRevLett.126.135101 Parker Data Used; Physics - Plasma Physics; Astrophysics - High Energy Astrophysical Phenomena |
2020 |
Density Fluctuations in the Solar Wind Based on Type III Radio Bursts Observed by Parker Solar Probe Radio waves are strongly scattered in the solar wind, so that their apparent sources seem to be considerably larger and shifted than the actual ones. Since the scattering depends on the spectrum of density turbulence, a better understanding of the radio wave propagation provides indirect information on the relative density fluctuations, ϵ=⟨δn⟩/⟨n⟩\ ϵ=⟨δn⟩/⟨n⟩ , at the effective turbulence scale length. Here, we analyzed 30 type III bursts detected by Parker Sola ... Krupar, Vratislav; Szabo, Adam; Maksimovic, Milan; Kruparova, Oksana; Kontar, Eduard; Balmaceda, Laura; Bonnin, Xavier; Bale, Stuart; Pulupa, Marc; Malaspina, David; Bonnell, John; Harvey, Peter; Goetz, Keith; de Wit, Thierry; MacDowall, Robert; Kasper, Justin; Case, Anthony; Korreck, Kelly; Larson, Davin; Livi, Roberto; Stevens, Michael; Whittlesey, Phyllis; Hegedus, Alexander; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab65bd Astrophysics - Earth and Planetary Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus |
2018 |
Spatial Expansion and Speeds of Type III Electron Beam Sources in the Solar Corona A component of space weather, electron beams are routinely accelerated in the solar atmosphere and propagate through interplanetary space. Electron beams interact with Langmuir waves resulting in type III radio bursts. They expand along the trajectory and, using kinetic simulations, we explore the expansion as the electrons propagate away from the Sun. Specifically, we investigate the front, peak, and back of the electron beam in space from derived radio brightness temperatures of fundamental type III emission. The front ... Published by: The Astrophysical Journal Published on: 11/2018 YEAR: 2018   DOI: 10.3847/1538-4357/aae5d4 Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: flares; Sun: particle emission; Sun: radio radiation |
2017 |
Langmuir wave electric fields induced by electron beams in the heliosphere Solar electron beams responsible for type III radio emission generate Langmuir waves as they propagate out from the Sun. The Langmuir waves are observed via in situ electric field measurements. These Langmuir waves are not smoothly distributed but occur in discrete clumps, commonly attributed to the turbulent nature of the solar wind electron density. Exactly how the density turbulence modulates the Langmuir wave electric fields is understood only qualitatively. Using weak turbulence simulations, we investigate how solar ... Published by: Astronomy \& Astrophysics Published on: 02/2017 YEAR: 2017   DOI: 10.1051/0004-6361/201629697 Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: flares; Sun: heliosphere; Sun: magnetic fields; Sun: particle emission; Sun: radio radiation |
2013 |
Evolution of the Solar Flare Energetic Electrons in the Inhomogeneous Inner Heliosphere Solar flare accelerated electrons escaping into the interplanetary space and seen as type III solar radio bursts are often detected near the Earth. Using numerical simulations we consider the evolution of energetic electron spectrum in the inner heliosphere and near the Earth. The role of Langmuir wave generation, heliospheric plasma density fluctuations, and expansion of magnetic field lines on the electron peak flux and fluence spectra is studied to predict the electron properties as could be observed by Solar Orbiter a ... Published by: Solar Physics Published on: 07/2013 YEAR: 2013   DOI: 10.1007/s11207-012-0013-x Astrophysics - Solar and Stellar Astrophysics; dynamics; Energetic particles; flares; parker solar probe; plasma; propagation; Radio bursts; Solar Probe Plus; Solar wind; type III; waves |
1