PSP Bibliography


  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 2 entries in the Bibliography.

Showing entries from 1 through 2


The angular-momentum flux in the solar wind observed during Solar Orbiter s first orbit

\ Aims: We present the first measurements of the angular- momentum flux in the solar wind recorded by the Solar Orbiter spacecraft. Our aim is to validate these measurements to support future studies of the Sun s angular-momentum loss. \ Methods: We combined 60-min averages of the proton bulk moments and the magnetic field measured by the Solar Wind Analyser and the magnetometer onboard Solar Orbiter. We calculated the angular-momentum flux per solid-angle element using data from the first orbit of the mission s cruise phase ...

Verscharen, Daniel; Stansby, David; Finley, Adam; Owen, Christopher; Horbury, Timothy; Maksimovic, Milan; Velli, Marco; Bale, Stuart; Louarn, Philippe; Fedorov, Andrei; Bruno, Roberto; Livi, Stefano; Khotyaintsev, Yuri; Vecchio, Antonio; Lewis, Gethyn; Anekallu, Chandrasekhar; Kelly, Christopher; Watson, Gillian; Kataria, Dhiren; Brien, Helen; Evans, Vincent; Angelini, Virginia; SWA, MAG; Teams, RPW;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140956

magnetohydrodynamics (MHD); plasmas; Sun: magnetic fields; Solar wind; stars: rotation; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics


Solar Radiation Disturbance Torque Reduction for the Parker Solar Probe Observatory

This paper examines the methodology used for reducing solar pressure disturbance torques for the Parker Solar Probe (PSP) Observatory by minimizing the offset between spacecraft s Center of Gravity (CG) and Center of Pressure (CP). The force due to solar radiation pressures encountered by the PSP spacecraft, particularly at the 9.86 solar-radii (Rs) closest approach point in the orbit, are of a sufficient magnitude to produce significant disturbance torques. Inside of 0.25 AU, the Observatory is required to keep its Thermal ...

Ruiz, Felipe; Kelly, Daniel; Napolillo, David;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2019     DOI:

Ballast (railroad track); Flight control systems; Observatories; Optical properties; Orbits; Probes; Propellants; Solar radiation; Spacecraft; Torque; Well testing; Parker Engineering