PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 19 entries in the Bibliography.


Showing entries from 1 through 19


2021

The near-Sun streamer belt solar wind: turbulence and solar wind acceleration

The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R$_\ensuremath\odot$, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence ...

Chen, C.; Chandran, B.; Woodham, L.; Jones, S.; Perez, J.; Bourouaine, S.; Bowen, T.; Klein, K.; Moncuquet, M.; Kasper, J.; Bale, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039872"

Parker Data Used; parker solar probe; Solar Probe Plus

Execution of Parker Solar Probe s unprecedented flight to the Sun and early results

Guo, Yanping; Thompson, Paul; Wirzburger, John; Pinkine, Nick; Bushman, Stewart; Goodson, Troy; Haw, Rob; Hudson, James; Jones, Drew; Kijewski, Seth; Lathrop, Brian; Lau, Eunice; Mottinger, Neil; Ryne, Mark; Shyong, Wen-Jong; Valerino, Powtawche; Whittenburg, Karl;

Published by: Acta Astronautica      Published on: 02/2021

YEAR: 2021     DOI: 10.1016/j.actaastro.2020.11.007

Parker Data Used; parker solar probe; V$^7$GA trajectory; Spaceflight; Mission design; Navigation; Trajectory maneuver; parker solar probe

2020

Operational Modeling of Heliospheric Space Weather for the Parker Solar Probe

The interpretation of multi-spacecraft heliospheric observations and three-dimensional reconstruction of the structured and evolving solar wind with propagating and interacting coronal mass ejections (CMEs) is a challenging task. Numerical simulations can provide global context and suggest what may and may not be observed. The Community Coordinated Modeling Center (CCMC) provides both mission science and space weather support to all heliospheric missions. Currently, this is realized by real-time simulations of the corotating ...

Odstrcil, Dusan; Mays, Leila; Hess, Phillip; Jones, Shaela; Henney, Carl; Arge, Charles;

Published by: ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab77cb

Parker Data Used

The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe

The Parker Solar Probe (PSP) completed its first solar encounter in 2018 November, bringing it closer to the Sun than any previous mission. This allowed in situ investigation of the heliospheric current sheet (HCS) inside the orbit of Venus. The Parker observations reveal a well defined magnetic sector structure placing the spacecraft in a negative polarity region for most of the encounter. The observed current sheet crossings are compared to the predictions of both potential field source surface and magnetohydrodynamic m ...

Szabo, Adam; Larson, Davin; Whittlesey, Phyllis; Stevens, Michael; Lavraud, Benoit; Phan, Tai; Wallace, Samantha; Jones-Mecholsky, Shaela; Arge, Charles; Badman, Samuel; Odstrcil, Dusan; Pogorelov, Nikolai; Kim, Tae; Riley, Pete; Henney, Carl; Bale, Stuart; Bonnell, John; Case, Antony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Koval, Andriy; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5dac

Parker Data Used; parker solar probe; Solar Probe Plus

Predicting the Solar Wind at the Parker Solar Probe Using an Empirically Driven MHD Model

Since its launch on 2018 August 12, Parker Solar Probe (PSP) has completed its first and second orbits around the Sun, having reached down to 35.7 solar radii at each perihelion. In anticipation of the exciting new data at such unprecedented distances, we have simulated the global 3D heliosphere using an MHD model coupled with a semi-empirical coronal model using the best available photospheric magnetograms as input. We compare our heliospheric MHD simulation results with in situ measurements along the PSP trajectory from ...

Kim, T.; Pogorelov, N.; Arge, C.; Henney, C.; Jones-Mecholsky, S.; Smith, W.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Kasper, J.; Korreck, K.; Stevens, M.; Case, A.; Whittlesey, P.; Livi, R.; Larson, D.; Klein, K.; Zank, G.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab58c9

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Small, Low-energy, Dispersive Solar Energetic Particle Events Observed by Parker Solar Probe

The Energetic Particle Instrument-Low Energy (EPI-Lo) experiment has detected several weak, low-energy (̃30-300 keV nucleon-1) solar energetic particle (SEP) events during its first two closest approaches to the Sun, providing a unique opportunity to explore the sources of low-energy particle acceleration. As part of the Parker Solar Probe (PSP) Integrated Science Investigation of the Sun (IS☉IS) suite, EPI-Lo was designed to investigate the physics of energetic particles; however, in the special lowest-ener ...

Hill, M.; Mitchell, D.; Allen, R.; de Nolfo, G.; Vourlidas, A.; Brown, L.; Jones, S.; McComas, D.; McNutt, R.; Mitchell, J.; Szalay, J.; Wallace, S.; Arge, C.; Christian, E.; Cohen, C.; Crew, A.; Desai, M.; Giacalone, J.; Henney, C.; Joyce, C.; Krimigis, S.; Leske, R.; Mewaldt, R.; Nelson, K.; Roelof, E.; Schwadron, N.; Wiedenbeck, M.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab643d

Parker Data Used; parker solar probe; Solar Probe Plus

Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au

Several fast solar wind streams and stream interaction regions (SIRs) were observed by the Parker Solar Probe (PSP) during its first orbit (2018 September-2019 January). During this time, several recurring SIRs were also seen at 1 au at both L1 (Advanced Composition Explorer (ACE) and Wind) and the location of the Solar Terrestrial Relations Observatory-Ahead (STEREO-A). In this paper, we compare four fast streams observed by PSP at different radial distances during its first orbit. For three of these fast stream events, ...

Allen, R.; Lario, D.; Odstrcil, D.; Ho, G.; Jian, L.; Cohen, C.; Badman, S.; Jones, S.; Arge, C.; Mays, M.; Mason, G.; Bale, S.; Bonnell, J.; Case, A.; Christian, E.; de Wit, Dudok; Goetz, K.; Harvey, P.; Henney, C.; Hill, M.; Kasper, J.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; McComas, D.; McNutt, R.; Mitchell, D.; Pulupa, M.; Raouafi, N.; Schwadron, N.; Stevens, M.; Whittlesey, P.; Wiedenbeck, M.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab578f

Parker Data Used; parker solar probe; Solar Probe Plus

Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter

In this paper, we present an analysis of the internal structure of a coronal mass ejection (CME) detected by in situ instruments on board the Parker Solar Probe (PSP) spacecraft during its first solar encounter. On 2018 November 11 at 23:53 UT, the FIELDS magnetometer measured an increase in strength of the magnetic field as well as a coherent change in the field direction. The SWEAP instrument simultaneously detected a low proton temperature and signatures of bidirectionality in the electron pitch angle distribution (PAD ...

Nieves-Chinchilla, Teresa; Szabo, Adam; Korreck, Kelly; Alzate, Nathalia; Balmaceda, Laura; Lavraud, Benoit; Paulson, Kristoff; Narock, Ayris; Wallace, Samantha; Jian, Lan; Luhmann, Janet; Morgan, Huw; Higginson, Aleida; Arge, Charles; Bale, Stuart; Case, Anthony; de Wit, Thierry; Giacalone, Joe; Goetz, Keith; Harvey, Peter; Jones-Melosky, Shaela; Kasper, J.; Larson, Davin; Livi, Roberto; McComas, David; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Raouafi, Nour; Schwadron, Nathan; Stevens, Michael; Whittlesey, Phyllis;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab61f5

Parker Data Used; parker solar probe; Solar Probe Plus

2019

So you Passed an Earned Value Management Government Validation - Now What?

In December 2016, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) received formal acceptance from NASA that its Earned Value Management System (EVMS) complied with the Electronic Industries Alliance (EIA) Standard 748 EVMS guidelines and thus had a government validated system. JHU/APL had successfully used its EVMS for single, large missions (Van Allen Probe from January 2009 to July 2012 and Parker Solar Probe from April 2014 to August 2018), but now with an increased workload JHU/APL was faced with the ne ...

Liggett, William; Hunter, Howard; Jones, Matthew;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2019     DOI:

Budget control; Electronics industry; Financial data processing; Investments; NASA; Probes; Parker Engineering

Execution of Parker solar probe s unprecedented flight to the sun and early results

Parker Solar Probe (PSP) was launched on August 12, 2018, on its way to enter the solar corona and "touch" the Sun for the first time. We utilize enormous planetary gravity assists from 7 repeated Venus flybys via a V7GA trajectory in 24 solar orbits over 7 years, to get within 8.86 solar radii from the Sun s surface. The probe successfully entered the V7GA trajectory and made the first Venus flyby only 52 days after launch. Five weeks later it flew by the Sun at a perihelion distance of 0.166 AU and fl ...

Guo, Yanping; Thompson, Paul; Wirzburger, John; Pinkine, Nick; Bushman, Stewart; Goodson, Troy; Haw, Rob; Hudson, James; Jones, Drew; Kijewski, Seth; Lathrop, Brian; Lau, Eunice; Mottinger, Neil; Ryne, Mark; Shyong, Wen-Jong; Valerino, Powtawche; Whittenburg, Karl;

Published by: Proceedings of the International Astronautical Congress, IAC      Published on:

YEAR: 2019     DOI:

Interplanetary flight; Navigation; Orbits; Space flight; Parker Engineering

Charting a course to the sun: Flight path control for parker solar probe

The successful launch of the Parker Solar Probe (PSP) on August 12, 2018 with a Delta IV rocket and Star-48BV third stage has placed the spacecraft on a 7-year trajectory to study the Sun. The goals of PSP are to better characterize our solar environment and advance our understanding of the Sun at 9.86 Rs. A total of 42 trajectory correction maneuvers are planned. This paper documents trajectory correction maneuver analysis performed just prior to launch until just past the first solar encounter. The pre-launch analysis culm ...

Valerino, Powtawche; Thompson, Paul; Jones, Drew; Goodson, Troy; R., Haw; E., Lau; N., Mottinger; M., Ryne;

Published by: Advances in the Astronautical Sciences      Published on:

YEAR: 2019     DOI:

Probes; Rockets; Space flight; Parker Engineering

2018

The Use of the Expanded FMEA in Spacecraft Fault Management

The NASA/APL Parker Solar Probe (PSP) mission will revolutionize our understanding of the Sun by swooping to within 4 million miles of the Sun s surface. This mission targets the fundamental processes and dynamics that characterize the Sun s corona and outwardly expanding solar wind and will be the first mission to fly into the low solar corona (i.e., the Sun s atmosphere) revealing both how the corona is heated and how the solar wind is accelerated. PSP has many engineering challenges presented by the intense environment in ...

Jones, Melissa; Fretz, Kristin; Kubota, Sanae; Smith, Clayton;

Published by: Proceedings - Annual Reliability and Maintainability Symposium      Published on:

YEAR: 2018     DOI:

Failure modes; Fault detection; Human resource management; Maintainability; NASA; Risk analysis; Risk assessment; Safety factor; Solar radiation; Solar wind; Spacecraft; Parker Engineering

Orbit determination covariance analyses for the parker solar probe mission

This paper details pre-launch navigation covariance analyses for the Parker Solar Probe mission. Baseline models and error assumptions are outlined. The results demonstrate how navigation will satisfy requirements and are used to define operational plans. A few sensitivities are identified and the accompanying investigations are described. Predicted state uncertainty results show that most requirements are met with substantial margin. Moreover, navigation sensitivities may be accommodated operationally and this has been inco ...

Jones, Drew; Thompson, Paul; Valerino, Powtawche; Lau, Eunice; Goodson, Troy; Chung, Min-Kun; Mottinger, Neil;

Published by: Advances in the Astronautical Sciences      Published on:

YEAR: 2018     DOI:

Astrophysics; Probes; Parker Engineering

Parker solar probe navigation: One year from launch

Parker Solar Probe (PSP) will be the first spacecraft designed to fly deep within the Sun’s lower corona and also becoming the fastest spacecraft flown. Launch is scheduled for next year, with a 20-day launch period beginning on 31 July 2018. PSP will be on a ballistic trajectory, requiring seven Venus flybys to progressively lower the perihelion over the seven-year mission. This near-solar environment can be particularly challenging from a spacecraft design as well as a navigation perspective. We discuss an overview o ...

Thompson, Paul; Goodson, Troy; Chung, Min-Kun; Jones, Drew; Lau, Eunice; Mottinger, Neil; Valerino, Powtawche;

Published by: Advances in the Astronautical Sciences      Published on:

YEAR: 2018     DOI:

Astrophysics; Parker Engineering

Flight path control analysis for parker solar probe

An unprecedented NASA mission to study the Sun, known as Parker Solar Probe (PSP), is under development. The primary objective of the PSP mission is to gather new data within 10 solar radii of the Sun’s center. The purpose of this paper is to review the statistical analysis of trajectory correction maneuvers (TCMs) for PSP’s baseline trajectory. The baseline mission includes a total of 42 TCMs that will be accomplished with a monopropellant propulsion system that consists of twelve 4.4 N thrusters. Assuming curre ...

Valerino, Powtawche; Thompson, Paul; Jones, Drew; Goodson, Troy; Chung, Min-Kun; Mottinger, Neil;

Published by: Advances in the Astronautical Sciences      Published on:

YEAR: 2018     DOI:

Astrophysics; NASA; Probes; Propulsion; Statistical methods; Parker Engineering

2017

Navigating an earned value management validation led by NASA: A contractor s perspective and helpful hints

In 2012, The Johns Hopkins Applied Physics Laboratory (APL) was approved by the National Aeronautics and Space Administration (NASA) to move forward with Phase B of the Solar Probe Plus (SPP) Mission to design and build the first spacecraft to fly into the Sun s outer atmosphere and study its effects on planetary systems and human activities. While APL had successfully utilized its earned value management system (EVMS) on the Van Allen Probes mission, the SPP contract called for a "certified" EVMS, which required an in-depth ...

Liggett, William; Hunter, Howard; Jones, Matthew;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2017     DOI:

Budget control; Compliance control; Contractors; Human resource management; Man machine systems; NASA; Network security; Personnel training; Probes; Project management; Space flight; Value engineering; Parker Engineering

2016

Solar probe plus: Unique navigation modeling challenges

The Solar Probe Plus (SPP) mission is preparing to launch in 2018, and will directly investigate the outer atmosphere of our star. At 9. 86 solar radii, SPP must operate in an unexplored regime. The environment and aspects of the mission design present some unique challenges for navigation, particularly in terms of modeling the dynamics. Non-gravitational force models, unique to this mission, are given with analytical expressions. For each of these models (and error sources), a maximum bound on the force perturbation magnitu ...

Jones, Drew; Goodson, Troy; Thompson, Paul; Valerino, Powtawche; Williams, Jessica;

Published by: AIAA/AAS Astrodynamics Specialist Conference, 2016      Published on:

YEAR: 2016     DOI:

Astrophysics; Charged particles; Probes; Parker Engineering

2015

Dynamics of HVECs emitted from comet C/2011 L4 as observed by STEREO

Raouafi, N.; Lisse, C.~M.; Stenborg, G.; Jones, G.~H.; Schmidt, C.~A.;

Published by: Journal of Geophysical Research (Space Physics)      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2014JA020926

Parker Data Used; comets: general; comets: individual (C/2011 L4); Sun: magnetic fields; Sun: solar wind; Astrophysics - Earth and Planetary Astrophysics

2010

Ceramic coatings for the solar probe plus mission

A study was conducted to develop the coatings needed to protect the Solar Probe Plus Thermal Protection System (TPS) from the harsh environment. The TPS encountered harsh environment during its mission close to the sun, facing significant solar fluxes. The first part of the study addressed the way a coating s microstructure affected its optical properties and the way coatings were designed to maintain the right microstructure over temperature. The study was led by a researcher from the Advanced Technology Laboratory of the W ...

Mehoke, D.; Congdon, E.; , Drewry; Eddins, C.; Deacon, R.; Wolf, T.; Hahn, D.; King, D.; Nagle, D.; Buchta, M.; Zhang, D.; Hemker, K.; Spicer, J.; Jones, J.; Ryan, S.; Schlichter, G.;

Published by: Johns Hopkins APL Technical Digest (Applied Physics Laboratory)      Published on:

YEAR: 2010     DOI:

Grain growth; Microstructure; Optical properties; Probes; Parker Engineering



  1